Optical Technique, Volume. 47, Issue 2, 250(2021)

Magnetic resonance image segmentation method based on wavelet transformation and residual network

DU Xinyan*
Author Affiliations
  • [in Chinese]
  • show less
    References(12)

    [2] [2] Prasad S, Stezin A, Lenka A, et al. 3D Neuromelanin-sensitive magnetic resonance imaging of the substantia nigra in Parkinson's disease[J]. European Journal of Neurology,2018,25(4):680—686.

    [5] [5] Maayan, Frid-Adar, Idit, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J]. Neurocomputing,2018,321(2):321—331.

    [6] [6] Dubost F, Bortsova G, Adams H, et al. GP-Unet: lesion detection from weak labels with a 3D regression network[C]∥ International Conference on Medical Image Computing and Computer-Assisted Intervention.Germany:Springer-Verlag,2017:11—22.

    [7] [7] Wang W, Shen J, Shao L. Video salient object detection via fully convolutional networks[J]. IEEE Transactions on Image Processing,2017,27(1):38—49.

    [9] [9] Jiang J, Hu Y C, Tyagi N, et al. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets[J]. Medical Physics,2019,4(2):21—26.

    [10] [10] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging,2020,39(6):1856—1867.

    [12] [12] Da Silva P C L, Da Silva J P, Garcia A R G. Daubechies wavelets as basis functions for the vectorial beam propagation method[J]. Journal of Electromagnetic Waves,2019,33(8):1027—1041.

    [14] [14] Jun H, Shuai L, Jinming S, et al. Facial expression recognition based on VGGNet convolutional neural network[C]∥ 2018 Chinese Automation Congress (CAC).Xi’an,China:IEEE,2019,32—37.

    [15] [15] Liu Y, Stojadinovic S, Hrycushko B, et al. SU-C-BRA-06: automatic brain tumor segmentation for stereotactic radiosurgery applications[J]. Medical Physics,2016,43(24):3322—3322.

    [16] [16] Iqbal S, Ghani M U, Saba T, et al. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks[J]. Microsc Res Tech,2018,81(10):419—423.

    [17] [17] Gadosey P K, Li Y, Agyekum E A, et al. SD-UNet: stripping down U-net for segmentation of biomedical images on platforms with low computational budgets[J]. Diagnostics,2020,10(2):110—112.

    [18] [18] Yang T, Song J, Li L, et al. Improving brain tumor segmentation on MRI based on the deep U-net and residual units[J]. Journal of X-Ray Science and Technology,2019,28(13):1—16.

    Tools

    Get Citation

    Copy Citation Text

    DU Xinyan. Magnetic resonance image segmentation method based on wavelet transformation and residual network[J]. Optical Technique, 2021, 47(2): 250

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 18, 2020

    Accepted: --

    Published Online: Sep. 9, 2021

    The Author Email: Xinyan DU (zengyizf@126.com)

    DOI:

    CSTR:32186.14.

    Topics