Journal of Synthetic Crystals, Volume. 51, Issue 12, 2090(2022)

Comparative Study on Passivation Performance of Al2O3/SiNx and SiO2/Al2O3/SiNx Stacked Films for Emitter of TOPCon Solar Cells

YANG Lu*, LIU Dawei, ZHANG Ting, WEI Kaifeng, and SHI Huijun
Author Affiliations
  • [in Chinese]
  • show less
    References(22)

    [1] [1] RAHMAN M Z, KHAN S I. Advances in surface passivation of cSi solar cells[J]. Materials for Renewable and Sustainable Energy, 2012, 1(1): 1.

    [2] [2] SCHMIDT J, MERKLE A, BRENDEL R, et al. Surface passivation of highefficiency silicon solar cells by atomiclayerdeposited Al2O3[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 461466.

    [3] [3] BLAKERS A W, WANG A H, MILNE A M, et al. 22.8% efficient silicon solar cell[J]. Applied Physics Letters, 1989, 55(13): 13631365.

    [4] [4] RICHTER A, BENICK J, FELDMANN F, et al. Ntype Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar Energy Materials and Solar Cells, 2017, 173: 96105.

    [5] [5] SCHMIDT J, PEIBST R, BRENDEL R. Surface passivation of crystalline silicon solar cells: present and future[J]. Solar Energy Materials and Solar Cells, 2018, 187: 3954.

    [6] [6] WENHAM S R, ZHAO J, DAI X, et al. Surface passivation in high efficiency silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2001, 65(1/2/3/4): 377384.

    [8] [8] SCHMIDT J, WERNER F, VEITH B, et al. Advances in the surface passivation of silicon solar cells[J]. Energy Procedia, 2012, 15: 3039.

    [10] [10] SCHMIDT J, KERR M. Highestquality surface passivation of lowresistivity ptype silicon using stoichiometric PECVD silicon nitride[J]. Solar Energy Materials and Solar Cells, 2001, 65(1/2/3/4): 585591.

    [11] [11] HOEX B, SCHMIDT J, VAN DE SANDEN M C M, et al. Crystalline silicon surface passivation by the negativechargedielectric Al2O3[C]//2008 33rd IEEE Photovoltaic Specialists Conference. San Diego, CA, USA. IEEE: 14.

    [12] [12] DUTTAGUPTA S, LIN F, SHETTY K D, et al. Stateoftheart surface passivation of boron emitters using inline PECVD AlOx/SiNx stacks for industrial highefficiency silicon wafer solar cells[C]//2012 38th IEEE Photovoltaic Specialists Conference. Austin, TX, USA. IEEE: 10361039.

    [13] [13] HOEX B, VAN DE SANDEN M C M, SCHMIDT J, et al. Surface passivation of phosphorusdiffused n+type emitters by plasmaassisted atomiclayer deposited Al2O3[J]. Physica Status Solidi (RRL)Rapid Research Letters, 2012, 6(1): 46.

    [14] [14] DULLWEBER T, GATZ S, HANNEBAUER H, et al. Towards 20% efficient largearea screenprinted rearpassivated silicon solar cells[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 630638.

    [15] [15] BONILLA R S, HOEX B, HAMER P, et al. Dielectric surface passivation for silicon solar cells: a review[J]. Physica Status Solidi (a), 2017, 214(7): 1700293.

    [16] [16] ZHAO J H, WANG A H, GREEN M A. 24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates[J]. Progress in Photovoltaics: Research and Applications, 1999, 7(6): 471474.

    [17] [17] LANCASTER K, GROER S, FELDMANN F, et al. Study of pinhole conductivity at passivated carrierselected contacts of silicon solar cells[J]. Energy Procedia, 2016, 92: 116121.

    [18] [18] FELDMANN F, BIVOUR M, REICHEL C, et al. Passivated rear contacts for highefficiency ntype Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar Energy Materials and Solar Cells, 2014, 120: 270274.

    [19] [19] DINGEMANS G, KESSELS W M M. Status and prospects of Al2O3based surface passivation schemes for silicon solar cells[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(4): 040802.

    [20] [20] HOEX B, HEIL S B S, LANGEREIS E, et al. Ultralow surface recombination of cSi substrates passivated by plasmaassisted atomic layer deposited Al2O3[J]. Applied Physics Letters, 2006, 89(4): 042112.

    [21] [21] DINGEMANS G, TERLINDEN N M, PIERREUX D, et al. Influence of the oxidant on the chemical and fieldeffect passivation of Si by ALD Al2O3[J]. Electrochemical and SolidState Letters, 2011, 14(1): H1.

    [22] [22] AGOSTINELLI G, DELABIE A, VITANOV P, et al. Very low surface recombination velocities on ptype silicon wafers passivated with a dielectric with fixed negative charge[J]. Solar Energy Materials and Solar Cells, 2006, 90(18/19): 34383443.

    [23] [23] MIKOLAJICK T, BARTHA J W, DIRNSTORFER I, et al. Investigation of the cSi/Al2O3 interface for silicon surface passivation[C]// Pvsec, 2012, 28(3): 17931796.

    [24] [24] MATSUMOTO T, NAKAJIMA H, IRISHIKA D, et al. Ultrathin SiO2 layer formed by the nitric acid oxidation of Si (NAOS) method to improve the thermalSiO2/Si interface for crystalline Si solar cells[J]. Applied Surface Science, 2017, 395: 5660.

    Tools

    Get Citation

    Copy Citation Text

    YANG Lu, LIU Dawei, ZHANG Ting, WEI Kaifeng, SHI Huijun. Comparative Study on Passivation Performance of Al2O3/SiNx and SiO2/Al2O3/SiNx Stacked Films for Emitter of TOPCon Solar Cells[J]. Journal of Synthetic Crystals, 2022, 51(12): 2090

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 5, 2022

    Accepted: --

    Published Online: Feb. 18, 2023

    The Author Email: YANG Lu (yanglu2468@mail.nwpu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics