Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2210015(2021)

Non-Reference Blur Image Quality Evaluation Based on Saliency Object Classification

Feipeng Shen1、*, Tong Zhu1, Henan Zhang1,2, and Zhenghao Chen1
Author Affiliations
  • 1School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • 2Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116
  • show less
    Figures & Tables(17)
    Two images with different content. (a) Saliency object image; (b) no-saliency object image
    Framework of quality evaluation method proposed in this paper
    Framework diagram of SDOC algorithm
    Example images of saliency region segmentation. (a) Example image with saliency object; (b) first-level saliency region segmentation map of Fig. 4(a); (c) second-level saliency region segmentation map of Fig. 4(a); (d) example image without object; (e) first-level saliency region segmentation map of Fig. 4(d); (f) second-level saliency region segmentation map of Fig. 4(d)
    Scatter plot of BLUR database classification results
    Test results of global blur features in each database. (a) LIVE database; (b) CSIQ database; (c) TID2013 database; (d) BLUR database
    Test results of SOA algorithm in each database for different β. (a) PLCC; (b) SROCC
    Scatter plots of results of SOA algorithm for each database and corresponding fitting curves. (a) LIVE; (b) CSIQ; (c) TID2013; (d) BLUR
    Comparison of prediction curves of various algorithms. (a) CPBD; (b) LPC; (c) GMVG; (d) SOA
    • Table 1. Introduction of parameters of each database

      View table

      Table 1. Introduction of parameters of each database

      DatabaseDistortion typeNumber of samplesResolutionSubjective evaluationRange
      LIVEGaussian blur174768×512DMOS[0, 100]
      CSIQ150512×512DMOS[0, 1]
      TID2013125512×384MOS[0, 9]
      BLUR144481×321MOS[0, 10]
    • Table 2. LIVE database test results

      View table

      Table 2. LIVE database test results

      AlgorithmPLCCSROCCKROCC
      JNB0.82210.84190.6651
      CPBD0.91230.94290.8043
      LPC0.81720.95940.8241
      NRIQAVR0.80230.84410.7060
      GMVG0.93350.96330.8377
      SOA0.96670.96220.8369
    • Table 3. CSIQ database test results

      View table

      Table 3. CSIQ database test results

      AlgorithmPLCCSROCCKROCC
      JNB0.25080.76240.5971
      CPBD0.82920.88460.7081
      LPC0.90960.90680.7197
      NRIQAVR0.91520.88740.7688
      GMVG0.92640.95000.8153
      SOA0.94210.93580.7892
    • Table 4. TID2013 database test results

      View table

      Table 4. TID2013 database test results

      AlgorithmPLCCSROCCKROCC
      JNB0.68760.69020.5137
      CPBD0.84910.85200.6470
      LPC0.83820.88880.6839
      NRIQAVR0.78190.79670.6533
      GMVG0.91250.92740.7600
      SOA0.91300.91850.7430
    • Table 5. BLUR database test results

      View table

      Table 5. BLUR database test results

      AlgorithmPLCCSROCCKROCC
      JNB0.62950.66910.7621
      CPBD0.89440.90770.8318
      LPC0.91080.90490.7058
      NRIQAVR0.82610.84480.6876
      GMVG0.79180.90000.7441
      SOA0.91730.93480.7786
    • Table 6. Comprehensive performance error values of different algorithms for each database

      View table

      Table 6. Comprehensive performance error values of different algorithms for each database

      AlgorithmLIVECSIQTID2013BLUR
      JNB16.80049.34031.11035.070
      CPBD7.24014.31014.9459.895
      LPC11.1709.18013.6509.215
      NRIQAVR17.6809.87021.07016.455
      GMVG5.1606.1808.00515.410
      SOA3.5556.1058.4257.395
    • Table 7. F test related parameters of each database

      View table

      Table 7. F test related parameters of each database

      DatabaseConfidence levelFreedomFcritical
      LIVE0.91741.2150
      CSIQ1501.2335
      TID20131251.2586
      BLUR1441.2388
    • Table 8. Performance statistical results of SOA algorithm for each database

      View table

      Table 8. Performance statistical results of SOA algorithm for each database

      AlgorithmLIVECSIQTID2013BLUR
      JNB1111
      CPBD1111
      LPC1111
      NRIQAVR1111
      GMVG1001
    Tools

    Get Citation

    Copy Citation Text

    Feipeng Shen, Tong Zhu, Henan Zhang, Zhenghao Chen. Non-Reference Blur Image Quality Evaluation Based on Saliency Object Classification[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2210015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 3, 2020

    Accepted: Feb. 12, 2021

    Published Online: Nov. 5, 2021

    The Author Email: Feipeng Shen (641542849@qq.com)

    DOI:10.3788/LOP202158.2210015

    Topics