Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2210015(2021)
Non-Reference Blur Image Quality Evaluation Based on Saliency Object Classification
Fig. 1. Two images with different content. (a) Saliency object image; (b) no-saliency object image
Fig. 4. Example images of saliency region segmentation. (a) Example image with saliency object; (b) first-level saliency region segmentation map of
Fig. 6. Test results of global blur features in each database. (a) LIVE database; (b) CSIQ database; (c) TID2013 database; (d) BLUR database
Fig. 7. Test results of SOA algorithm in each database for different β. (a) PLCC; (b) SROCC
Fig. 8. Scatter plots of results of SOA algorithm for each database and corresponding fitting curves. (a) LIVE; (b) CSIQ; (c) TID2013; (d) BLUR
Fig. 9. Comparison of prediction curves of various algorithms. (a) CPBD; (b) LPC; (c) GMVG; (d) SOA
|
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Feipeng Shen, Tong Zhu, Henan Zhang, Zhenghao Chen. Non-Reference Blur Image Quality Evaluation Based on Saliency Object Classification[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2210015
Category: Image Processing
Received: Dec. 3, 2020
Accepted: Feb. 12, 2021
Published Online: Nov. 5, 2021
The Author Email: Feipeng Shen (641542849@qq.com)