Electronics Optics & Control, Volume. 32, Issue 7, 33(2025)
Lightweight Semantic Segmentation of Remote Sensing Images Based on Transformer and Depth-Wise Separable Convolution
[1] [1] LIU S Y,CHENG J,LIANG L K,et al. Light-weight semantic segmentation network for UAV remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14: 8287-8296.
[2] [2] TONG X Y,XIA G S,LU Q,et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment,2020,237: 111-322.
[3] [3] ZHU X X,TUIA D,MOU L C,et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine,2023,5(4): 8-36.
[4] [4] MA L,LIU Y,ZHANG X L,et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2023,152: 166-177.
[6] [6] ZHANG C,SARGENT I,PAN X,et al. Joint deep learning for land cover and land use classification[J]. Remote Sensing of Environment,2019,221: 173-187.
[7] [7] ZHANG C,SARGENT I,PAN X,et al. An object-based convolutional neural network (OCNN) for urban land use classification[J]. Remote Sensing of Environment,2018,216: 57-70.
[8] [8] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE,2015: 3431-3440.
[9] [9] SHERRAH J,LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4): 640-651.
[10] [10] MAGGIORI E,TARABALKA Y,CHARPIAT G,et al. High-resolution aerial image labeling with convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,55(12): 7092-7103.
[12] [12] LIU Q H,KAMPFFMEYER M,JENSSEN R,et al. Dense dilated convolutions' merging network for land cover classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,55(9): 6309-6320.
[13] [13] HUANG Z L,WANG X G,WEI Y C,et al. CCNet: criss-cross attention for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(6): 6896-6908.
[14] [14] YANG Y,HALLMAN S,RAMANAN D,et al. Layered object models for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(9): 1731-1743.
[15] [15] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,34: 1731-1743.
[16] [16] ZHU X Z,SU W J,LU L W,et al. Deformable DETR: deformable Transformers for end-to-end object detection[R]. Los Alamos: arXiv Preprint,2020: arXiv: 2010.04159.
[17] [17] WANG L B,LI R,DUAN C X,et al. Transformer meets DCFAM: a novel semantic segmentation scheme for fine-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Magazine,2023,452: 48-62.
[18] [18] LIU Z,LIN Y T,CAO Y,et al. Swin Transformer: hierarchical vision Transformer using shifted windows[J]. Remote Sensing of Environment,2023,13: 2965.
[19] [19] HAN K,WANG Y H,CHEN H T,et al. A survey on vision Transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(1): 87-110.
[20] [20] WANG L B,LI R,WANG D Z,et al. Transformer meets convolution: a bilateral awareness network for semantic segmentation of very fine resolution urban scene images[J]. Remote Sensing,2021,13(16): 3065.
Get Citation
Copy Citation Text
MA Fei, ZHANG Senfeng, YANG Feixia, XU Guangxian. Lightweight Semantic Segmentation of Remote Sensing Images Based on Transformer and Depth-Wise Separable Convolution[J]. Electronics Optics & Control, 2025, 32(7): 33
Category:
Received: May. 22, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: