Laser & Optoelectronics Progress, Volume. 56, Issue 21, 211501(2019)

Classroom Face Detection Algorithm Based on Convolutional Neural Network

Meng Wang, Hansong Su, Gaohua Liu*, and Shen Li
Author Affiliations
  • College of Electrical Automation and Information Engineering, Tianjin University, Tianjin, 300072, China
  • show less
    References(16)

    [1] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 26-July 1, 2016, Las Vegas, Nevada. New York: IEEE, 770-778(2016).

    [2] Seferbekov S, Iglovikov V, Buslaev A et al. Feature pyramid network for multi-class land segmentation. [C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 18-22, 2018, Salt Lake City, Utah. New York: IEEE, 272-275(2018).

    [3] Neubeck A, van Gool L. Efficient non-maximum suppression. [C]∥18th International Conference on Pattern Recognition (ICPR'06), August 20-24, 2006, Hong Kong, China. New York: IEEE, 9210072(2006).

    [4] Qi C, Su F. Contrastive-center loss for deep neural networks. [C]∥2017 IEEE International Conference on Image Processing (ICIP), September 17-20, 2017, Beijing, China. New York: IEEE, 2851-2855(2017).

    [5] Clevert D A, Unterthiner T, Hochreiter S. Fast. -02-22)[2019-03-02]. https:∥arxiv., org/abs/1511, 07289(2016).

    [6] Yang S, Luo P, Loy C C et al. WIDER FACE: a face detection benchmark. [C]∥The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 26-July 1, 2016, Las Vegas, Nevada. New York: IEEE, 5525-5533(2016).

    [9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. [C]∥Advances in Neural Information Processing Systems 25 (NIPS 2012), December 3-8, 2012, Harrahs and Harveys, Lake Tahoe. New York: NIPS, 1097-1105(2012).

    [11] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. [C]∥ Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), April 11-13, 2011, Fort Lauderdale, USA. [S.l.: s.n.], 315-323(2011).

    [13] Ohn-Bar E, Trivedi M M. To boost or not to boost? On the limits of boosted trees for object detection. [C]∥2016 23rd International Conference on Pattern Recognition (ICPR), December 4-8, 2016, Cancun, Mexico. New York: IEEE, 3350-3355(2016).

    [14] Yang S, Luo P, Loy C C et al. From facial parts responses to face detection: a deep learning approach. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 3676-3684(2015).

    [16] Yang B, Yan J J, Lei Z et al. Aggregate channel features for multi-view face detection. [C]∥IEEE International Joint Conference on Biometrics, September 29-October 2, 2014, Clearwater, FL, USA. New York: IEEE, 14838106(2014).

    Tools

    Get Citation

    Copy Citation Text

    Meng Wang, Hansong Su, Gaohua Liu, Shen Li. Classroom Face Detection Algorithm Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(21): 211501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 28, 2019

    Accepted: Apr. 26, 2019

    Published Online: Nov. 2, 2019

    The Author Email: Gaohua Liu (suppig@126.com)

    DOI:10.3788/LOP56.211501

    Topics