Remote Sensing Technology and Application, Volume. 39, Issue 4, 971(2024)

Numerical Simulation and Risk Evaluation of Urban Flooding based on High-resolution Remote Sensing

Xiaomeng XUE, Hongga LI, Xiaoxia HUANG, and Kai WEI
Author Affiliations
  • National Remote Sensing Application Engineering Technology Research Center,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing100101,China
  • show less
    Figures & Tables(22)
    GF-7 imagery of the study area
    Model of drainage system of the study area
    Framework of model simulation
    Framework of terrain extraction
    Framework of urban waterlogging numerical simulation
    3D DEM (with buildings and topography) of the study area in 2017 and 2021
    Extraction results of the underlying surface information of the study area in 2017 and 2021
    Simulation results of waterlogging in 2017
    Simulation results of waterlogging in 2021
    Water flow movement at different unit scales (Black arrows in the figure represent the direction of runoff and the length represents velocity)
    Satellite image and live view of Point 1 located at Keyuan MTR station
    Satellite image and live view of Point 2 located at parking lot of the industry-academy research base
    Changes in water depth at Points 1 and 2 under the 1-in-100-year rainfall scenario
    Risk level of waterlogging in 2017 and 2021
    • Table 1. Urban waterlogging risk assessment criteria

      View table
      View in Article

      Table 1. Urban waterlogging risk assessment criteria

      风险等级影响因素
      水深h(m)流速v(m/s)影响面积A(m2)人口密度ρ(人/km2)
      阈值评价值阈值评价值阈值评价值阈值评价值
      <0.1530<0.430<10030<1 00030
      0.15~0.6500.4~0.850100~1 000501 000~2 00050
      0.6~1.2700.8~1.5701 000~10 000702 000~5 00070
      极高>1.290>1.590>10 00090>10 00090
    • Table 2. Confusion matrix for underlayment accuracy verification

      View table
      View in Article

      Table 2. Confusion matrix for underlayment accuracy verification

      类别小区内部硬化地面建筑物市政道路园林绿地水域裸地总和用户精度/%
      总体精度:82.29%
      小区内部硬化地面34813014765.38
      建筑物96360218177.78
      市政道路87415216483.67
      园林绿地0311202212892.31
      水域00002102177.78
      裸地10020232682.14
      总和5281491302728367
      生产者精度/%72.3477.7864.0693.75100.0088.46
    • Table 3. Depth and area of waterlogging in different years and recurrence periods

      View table
      View in Article

      Table 3. Depth and area of waterlogging in different years and recurrence periods

      2017年积水面积/km22021年积水面积/km2
      积水深度<0.15 m0.15~0.6 m0.6~1.2 m>1.2 m<0.15 m0.15~0.6 m0.6~1.2 m>1.2 m
      20年一遇0.094 60.217 30.133 10.040 60.067 60.156 60.109 90.042 0
      50年一遇0.092 40.222 40.160 40.052 90.070 00.161 90.127 90.057 5
      100年一遇0.091 60.221 20.177 50.063 90.070 40.164 60.138 20.069 8
    • Table 4. Accuracy of numerical simulation models for waterlogging

      View table
      View in Article

      Table 4. Accuracy of numerical simulation models for waterlogging

      积水测站编号00000001150000000128
      积水测站位置创盛路新能源产业园西丽塘朗工业区B区
      积水测站实测积水深度0.17 m1.35 m
      城市内涝积水数值模拟结果0.20 m1.55 m
      精度82.35%85.19%
    • Table 5. Accuracy of waterlogging depth for different resolution DEMs

      View table
      View in Article

      Table 5. Accuracy of waterlogging depth for different resolution DEMs

      DEM网格大小
      2.5 m5.0 m10.0 m20.0 m
      积水深度相对精度/%1 h100.0094.6976.1241.91
      2 h100.0097.0694.5868.62
      24 h100.0097.1296.5575.86
    • Table 6. Comparison of underlying surface categories and water depth

      View table
      View in Article

      Table 6. Comparison of underlying surface categories and water depth

      年份点号

      不透水面占比

      /%

      园林绿地和裸地占比

      /%

      最大积水深度

      /m

      2017年146.1053.900.58
      282.4317.570.59
      2021年178.0121.991.14
      268.0032.000.13
    • Table 7. Changes statistics for underlying information and waterlogged area of 2017<bold>~</bold>2021

      View table
      View in Article

      Table 7. Changes statistics for underlying information and waterlogged area of 2017<bold>~</bold>2021

      2017年2021年面积变化/km2
      面积/km2占比/%面积/km2占比/%
      研究区下垫面小区内部硬化地面1.160 735.971.220 737.70+0.060 0
      建筑物0.523 916.240.556 717.20+0.032 8
      市政道路0.449 213.920.449 813.89+0.000 6
      园林绿地0.925 228.670.846 626.15-0.078 6
      水域0.081 02.510.081 92.53+0.000 9
      裸地0.086 82.690.081 92.53-0.005 0
      积水面积20年一遇降雨0.485 614.980.376 111.60-0.109 5
      50年一遇降雨0.528 116.290.417 312.87-0.110 8
      100年一遇降雨0.554 217.090.443 013.66-0.111 2
    • Table 8. Results of risk assessment of 2017<bold>~</bold>2021 of the study area

      View table
      View in Article

      Table 8. Results of risk assessment of 2017<bold>~</bold>2021 of the study area

      风险等级2017年2021年

      面积变化

      /km2

      面积/km2占比/%面积/km2占比/%
      低风险0.096 92.990.085 42.63-0.011 5
      中风险0.333 610.290.266 28.21-0.067 4
      高风险0.118 23.650.087 62.70-0.030 6
      极高风险0.004 50.140.005 10.16+0.000 6
      总和0.553 117.060.444 213.70-0.108 9
    Tools

    Get Citation

    Copy Citation Text

    Xiaomeng XUE, Hongga LI, Xiaoxia HUANG, Kai WEI. Numerical Simulation and Risk Evaluation of Urban Flooding based on High-resolution Remote Sensing[J]. Remote Sensing Technology and Application, 2024, 39(4): 971

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 24, 2022

    Accepted: --

    Published Online: Jan. 6, 2025

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2024.4.0971

    Topics