Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450013(2024)
GPU-accelerated OCT imaging: Real-time data processing and artifact suppression for enhanced monitoring of 3D bioprinted tissues and vascular-like networks
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito. Optical coherence tomography. Science, 254, 1178-1181(1991).
[2] S. Zheng, Y. Bai, Z. Xu, P. Liu, G. Ni. Optical coherence tomography for three-dimensional imaging in the biomedical field: A review. Front. Phys., 9, 744346(2021).
[3] P. Alexopoulos, C. Madu, G. Wollstein, J. S. Schuman. The development and clinical application of innovative optical ophthalmic imaging techniques. Front. Med. (Lausanne), 9, 891369(2022).
[4] K. Fujii, D. Kawasaki, M. Masutani, T. Okumura, T. Akagami, T. Sakoda, T. Tsujino, M. Ohyanagi, T. Masuyama. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc. Imaging, 3, 168-175(2010).
[5] J. Kim, S. Kim, W. J. Choi. Non-invasive monitoring of cutaneous wound healing in non-diabetic and diabetic model of adult zebrafish using OCT angiography. Bioengineering, 10, 538(2023).
[6] S. Yang, L. Wang, Q. Chen, M. Xu. In situ process monitoring and automated multi-parameter evaluation using optical coherence tomography during extrusion-based bioprinting. Addit. Manuf., 47, 102251(2021).
[7] D. M. Sampson, A. M. Dubis, F. K. Chen, R. J. Zawadzki, D. D. Sampson. Towards standardizing retinal optical coherence tomography angiography: A review. Light Sci. Appl., 11, 63(2022).
[8] P. Shin, W. Choi, J. Joo, W. Y. Oh. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography. J. Cereb. Blood Flow Metab., 39, 1983-1994(2019).
[9] Z. Zhang, T. Zhu, T. Cao, Z. Gong, L. Yao, K. Liu, J. Ye, P. Li. Swept source intraoperative OCT angiography. J. Innov. Opt. Health Sci., 14, 2140009(2021).
[10] H. Li, K. Liu, L. Yao, X. Deng, Z. Zhang, P. Li. ID-OCTA: OCT angiography based on inverse SNR and decorrelation features. J. Innov. Opt. Health Sci., 14, 2130001(2021).
[11] S. Yang, Q. Chen, L. Wang, M. Xu. In situ defect detection and feedback control with three-dimensional extrusion-based bioprinter-associated optical coherence tomography. Int. J. Bioprint., 9, 624(2023).
[12] H. Tang, C. Xu, Y. Ge, M. Xu, L. Wang. Multiparametric quantitative analysis of photodamage to skin using optical coherence tomography. Sensors (Basel), 23, 3589(2023).
[13] L. Zhang, L. Wang, S. Yang, K. He, D. Bao, M. Xu. Quantifying the drug response of patient-derived organoid clusters by aggregated morphological indicators with multi-parameters based on optical coherence tomography. Biomed. Opt. Express, 14, 1703-1717(2023).
[14] D. Bao, L. Wang, X. Zhou, S. Yang, K. He, M. Xu. Automated detection and growth tracking of 3D bio-printed organoid clusters using optical coherence tomography with deep convolutional neural networks. Front. Bioeng. Biotechnol., 11, 1133090(2023).
[15] A. Bhattacharyya, G. Janarthanan, T. Kim, S. Taheri, J. Shin, J. Kim, H. C. Bae, H. S. Han, I. Noh. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Biomater. Res., 26, 54(2022).
[16] Y. Li, Z. Xu, Q. Liu, Y. Wang, K. Lin, J. Xia, S. Chen, L. Hu. Relationship between corneal biomechanical parameters and corneal sublayer thickness measured by Corvis ST and UHR-OCT in keratoconus and normal eyes. Eye Vision, 8, 1-12(2021).
[17] A. Narayanaswamy, L. M. Sakata, M.-G. He, D. S. Friedman, Y.-H. Chan, R. Lavanya, M. Baskaran, P. J. Foster, T. Aung. Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles: An anterior segment OCT study. Arch. Ophthalmol., 128, 1321-1327(2010).
[18] Y. Xie, L. Chen, U. G. Hofmann. Reduction of periodic noise in Fourier domain optical coherence tomography images by frequency domain filtering. Biomed. Eng./Biomed. Tech., 57, 830-832(2012).
[19] A. Barlow, J. Portoles, N. Sano, P. Cumpson. Removing beam current artifacts in helium ion microscopy: A comparison of image processing techniques. Microsc. Microanal., 22, 939-947(2016).
[20] X. Wu, D. Gao, D. Borroni, S. Madhusudhan, Y. Zheng. Stripe noise removal and vessel segmentation of OCTA images. Photo Acoustic and Optical Coherence Tomography Imaging, 3(2021).
[21] H. Zhang, J. Cai, W. He, H. Shen, L. Zhang. Double low-rank matrix decomposition for hyperspectral image denoising and destriping. IEEE Trans. Geosci. Remote Sens., 60, 1-19(2022).
[22] J. Guan, R. Lai, A. Xiong. Wavelet deep neural network for stripe noise removal. IEEE Access, 7, 44544-44554(2019).
[23] D. Gao, N. Celik, X. Wu, B. M. Williams, A. Stylianides, Y. Zheng. A novel deep learning based OCTA de-striping method. Medical Image Understanding and Analysis, 189-197(2020).
[24] M. Hu, Z. Yuan, D. Yang, J. Zhao, Y. Liang. Deep learning-based inpainting of saturation artifacts in optical coherence tomography images. J. Innov. Opt. Health Sci., 17, 2350026(2023).
[25] B. Ji, G. He, Z. Chen, L. Zhao. A novel diffusion-model-based OCT image inpainting algorithm for wide saturation artifacts. Chinese Conf. Pattern Recognition and Computer Vision (PRCV), 284-295(2023).
[26] J. Li, H. Zhang, X. Wang, H. Wang, J. Hao, G. Bai. Inpainting saturation artifact in anterior segment optical coherence tomography. Sensors, 23, 9439(2023).
[27] Y. Tang, Y. Li, H. Liu, J. Li, P. Jin, Y. Gan, Y. Ling, Y. Su. Multi-scale sparse representation-based shadow inpainting for retinal OCT images. Medical Imaging 2022: Image Processing, 9-17(2022).
[28] J. F. de Boer, R. Leitgeb, M. Wojtkowski. Twenty-five years of optical coherence tomography: The paradigm shift in sensitivity and speed provided by Fourier domain OCT. Biomed. Opt. Express, 8, 3248-3280(2017).
[29] M. Gob, T. Pfeiffer, W. Draxinger, S. Lotz, J. P. Kolb, R. Huber. Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence. Biomed. Opt. Express, 13, 713-727(2022).
[30] A. Britten, P. Matten, J. Weiss, M. Niederleithner, H. Roodaki, B. Sorg, N. Hecker-Denschlag, W. Drexler, R. A. Leitgeb, T. Schmoll. Surgical microscope integrated MHz SS-OCT with live volumetric visualization. Biomed. Opt. Express, 14, 846-865(2023).
[31] D. Huang, F. Li, Z. He, Z. Cheng, C. Shang, P. K. A. Wai. 400MHz ultrafast optical coherence tomography. Opt. Lett., 45, 6675-6678(2020).
[32] G. Liu, J. Zhang, L. Yu, T. Xie, Z. Chen. Real-time polarization-sensitive optical coherence tomography data processing with parallel computing. Appl. Opt., 48, 6365-6370(2009).
[33] T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer. Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array. Rev. Sci. Instrum., 79, 114301(2008).
[34] K. Zhang, J. U. Kang. Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system. Opt. Express, 18, 11772-11784(2010).
[35] J. Rasakanthan, K. Sugden, P. H. Tomlins. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524kHz using a graphics processing unit. J. Biomed. Opt., 16, 020505(2011).
[36] J. Lyu, L. Ren, Q. Y. Liu, Y. Wang, Z. Q. Zhou, Y. Y. Chen, H. B. Jia, Y. G. Tang, M. Li. Swept-source endoscopic optical coherence tomography real-time imaging system based on GPU acceleration for axial megahertz high-speed scanning. Eur. Rev. Med. Pharmacol. Sci., 26, 7349-7358(2022).
[37] J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, R. Huber. Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates. PLoS One, 14, e0213144(2019).
[38] X. Deng, K. Liu, T. Zhu, D. Guo, X. Yin, L. Yao, Z. Ding, J. Ye, P. Li. Dynamic inverse SNR-decorrelation OCT angiography with GPU acceleration. Biomed. Opt. Express, 13, 3615-3628(2022).
[39] S. Li, M. A. Azam, A. Gunalan, L. S. Mattos. One-step enhancer: Deblurring and denoising of OCT images. Appl. Sci., 12(2022).
[40] J. J. Rico-Jimenez, D. Hu, E. M. Tang, I. Oguz, Y. K. Tao. Real-time OCT image denoising using a self-fusion neural network. Biomed. Opt. Express, 13, 1398-1409(2022).
[41] J. Aum, J.-H. Kim, J. Jeong. Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels. Appl. Opt., 54, D43-D50(2015).
[42] Y. Li, Y. Fan, H. Liao. Self-supervised speckle noise reduction of optical coherence tomography without clean data. Biomed. Opt. Express, 13, 6357-6372(2022).
[43] D. Xu, F. Bai, X. Zhang. A novel electromagnetic noise and image stripe noise suppression method between SMA-OIS actuator and CMOS image sensor. IEEE Sens. J., 23, 14193-14202(2023).
[44] L. Guo, P. Li, C. Pan, R. Liao, Y. Cheng, W. Hu, Z. Chen, Z. Ding, P. Li. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm. J. Opt., 18, 025301(2016).
[45] Z. Jia, D. Chen, B. Wang, C. Duan. Research on improved ray casting algorithm and its application in three-dimensional reconstruction. Shock Vib., 2021, 1-6(2021).
[46] J. Beyer, M. Hadwiger, H. Pfister. State-of-the-art in GPU-based large-scale volume visualization. Comput. Graph. Forum, 34, 13-37(2015).
[47] H. Jeong, H.-J. Kim, M. G. Hyeon, P. Kim, Y. Choi, B.-M. Kim. Shadow extension for ray casting enhances volumetric visualization in real-time 4D-OCT. Opt. Commun., 460, 125237(2020).
[49] Z. Fayyaz, D. Platnick, H. Fayyaz, N. Farsad. Deep unfolding for iterative stripe noise removal. 2022 Int. Joint Conf. Neural Networks (IJCNN, Italy), 1-7(2022).
[50] X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, Y. Jia. Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition. Opt. Lett., 44, 1431-1434(2019).
[51] W. Chen, H. Wang. OCTSharp: An open-source and real-time OCT imaging software based on C. Biomed. Op. Express, 14, 6060-6071(2023).
[52] B. D. Cardoso, E. M. S. Castanheira, S. Lanceros-Mendez, V. F. Cardoso. Recent advances on cell culture platforms for in vitro drug screening and cell therapies: From conventional to microfluidic strategies. Adv. Healthc. Mater., 12, e2202936(2023).
[53] Y. B. Li, C. Sodja, M. Rukhlova, J. Nhan, J. J. A. Poole, H. Allen, S. Yimer, E. Baumann, E. Bedford, H. Prazak, W. J. Costain, S. Murugkar, J.-P. St-Pierre, L. Mostaço-Guidolin, A. Jezierski. Angiogenesis driven extracellular matrix remodeling of 3D bioprinted vascular networks. Bioprinting, 30, -e00258(2023).
[54] R. Byers, S. Matcher. Attenuation of stripe artifacts in optical coherence tomography images through wavelet-FFT filtering. Biomed. Opt. Express, 10, 4179-4189(2019).
[55] J. Cao, Z. Xu, M. Xu, Y. Ma, Y. Zhao. A two-stage framework for optical coherence tomography angiography image quality improvement. Front. Med., 10, 1061357(2023).
[56] Y. Y. Chen, B. R. Kingston, W. C. W. Chan. Transcribing in vivo blood vessel networks into in vitro perfusable microfluidic devices. Adv. Mater. Technol., 5(2020).
[57] X. Li, L. Liu, X. Zhang, T. Xu. Research and development of 3D printed vasculature constructs. Biofabrication, 10, 032002(2018).
[58] S. Chen, B. Potsaid, Y. Li, J. Lin, Y. Hwang, E. M. Moult, J. Zhang, D. Huang, J. G. Fujimoto. High speed, long range, deep penetration swept source OCT for structural and angiographic imaging of the anterior eye. Sci. Rep., 12, 992(2022).
[59] C. D. Lu, N. K. Waheed, A. Witkin, C. R. Baumal, J. J. Liu, B. Potsaid, A. Joseph, V. Jayaraman, A. Cable, K. Chan. Microscope-integrated intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging. Ophthalmic Surg., Lasers Imaging Retina, 49, 94-102(2018).
[60] T. S. Kim, J. Joo, I. Shin, P. Shin, W. J. Kang, B. J. Vakoc, W.-Y. Oh. 9.4MHz A-line rate optical coherence tomography at 1300nm using a wavelength-swept laser based on stretched-pulse active mode-locking. Sci. Rep., 10, 9328(2020).
Get Citation
Copy Citation Text
Shanshan Yang, Jinhao Zhou, Hao Guo, Ling Wang, Mingen Xu. GPU-accelerated OCT imaging: Real-time data processing and artifact suppression for enhanced monitoring of 3D bioprinted tissues and vascular-like networks[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450013
Category: Research Articles
Received: Feb. 5, 2024
Accepted: May. 12, 2024
Published Online: Nov. 13, 2024
The Author Email: Shanshan Yang (yangshan@hdu.edu.cn), Ling Wang (lingw@hdu.edu.cn), Mingen Xu (xumingen@hdu.edu.cn)