Frontiers of Optoelectronics, Volume. 14, Issue 4, 445(2021)

Interface phonon polariton coupling to enhance graphene absorption

Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, and Changhong CHEN*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(25)

    [1] [1] Parmar J, Patel S K, Ladumor M, Sorathiya V, Katrodiya D. Graphene-silicon hybrid chirped-superstructure bragg gratings for far infrared frequency. Materials Research Express, 2019, 6(6): 065606

    [2] [2] Huck C, Tzschoppe M, Semenyshyn R, Neubrech F, Pucci A. Chemical identification of single ultrafine particles using surfaceenhanced infrared absorption. Physical Review Applied, 2019, 11 (1): 014036

    [3] [3] Thomas L, Sorathiya V, Patel S K, Guo T. Graphene-based tunable near-infrared absorber. Microwave and Optical Technology Letters, 2019, 61(5): 1161–1165

    [4] [4] Patel S K, Charola S, Parmar J, Ladumor M. Broadband metasurface solar absorber in the visible and near-infrared region. Materials Research Express, 2019, 6(8): 086213

    [5] [5] Katrodiya D, Jani C, Sorathiya V, Patel S K. Metasurface based broadband solar absorber. Optical Materials, 2019, 89: 34–41

    [6] [6] Hao R, Jin J, Wei X, Jin X, Zhang X, Li E. Recent developments in graphene-based optical modulators. Frontiers of Optoelectronics, 2014, 7(3): 277–292

    [7] [7] Geim A K. Graphene: status and prospects. Science, 2009, 324 (5934): 1530–1534

    [8] [8] He X, Liu F, Lin F, Xiao G, Shi W. Tunable MoS2 modified hybrid surface plasmon waveguides. Nanotechnology, 2019, 30(12): 125201

    [9] [9] hi C, He X, Peng J, Xiao G, Liu F, Lin F, Zhang H. Tunable terahertz hybrid graphene-metal patterns metamaterials. Optics & Laser Technology, 2019, 114: 28–34

    [10] [10] Yi Z, Liang C, Chen X, Zhou Z, Tang Y, Ye X, Yi Y,Wang J,Wu P. Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application. Micromachines, 2019, 10(7): 443

    [11] [11] Cen C, Zhang Y, Liang C, Chen X, Yi Z, Duan T, Tang Y, Ye X, Yi Y, Xiao S. Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays. Physics Letters A, 2019, 383(24): 3030–3035

    [12] [12] Cen C, Yi Z, Zhang G, Zhang Y, Liang C, Chen X, Tang Y, Ye X, Yi Y, Wang J, Hua J. Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results in Physics, 2019, 14: 102463

    [13] [13] Patel S K, Ladumor M,Sorathiya V, Guo T. Graphene based tunable grating structure. Materials Research Express, 2019, 6(2): 025602

    [14] [14] Patel S K, Ladumor M, Parmar J, Guo T. Graphene-based tunable reflector superstructure grating. Applied Physics. A, Materials Science & Processing, 2019, 125(8): 574

    [15] [15] Le Gall J, Olivier M, Greffet J J. Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton. Physical Review B, 1997, 55 (15): 9195–9199

    [16] [16] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 2008, 103(6): 064302

    [17] [17] He X, Liu F, Lin F, Shi W. Investigation of terahertz all-dielectric metamaterials. Optics Express, 2019, 27(10): 13831–13844

    [18] [18] Achilli S, Cavaliere E, Nguyen T H, Cattelan M, Agnoli S. Growth and electronic structure of 2D hexagonal nanosheets on a corrugated rectangular substrate. Nanotechnology, 2018, 29(48): 485201

    [19] [19] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 2008, 103(6): 064302

    [20] [20] Peres N M R, Guinea F, Castro Neto A H. Electronic properties of disordered two-dimensional carbon. Physical Review B, 2006, 73 (12): 125411

    [21] [21] Zhang Q, Li X, Hossain M, Xue Y, Zhang J, Song J, Liu J, TurnerM D, Fan S, Bao Q, Gu M. Graphene surface plasmons at the nearinfrared optical regime. Scientific Reports, 2014, 4: 6559

    [22] [22] Tiwald T E, Woollam J A, Zollner S, Christiansen J, Gregory R B, Wetteroth T, Wilson S R, Powell A R. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Physical Review B, 1999, 60(16): 11464–11474

    [23] [23] Huang K C, Bienstman P, Joannopoulos J D, Nelson K A, Fan S. Phonon-polariton excitations in photonic crystals. Physical Review B, 2003, 68(7): 075209

    [24] [24] Zhang Y, Meng D, Li X, Yu H, Lai J, Fan Z, Chen C. Significantly enhanced infrared absorption of graphene photodetector under surface-plasmonic coupling and polariton interference. Optics Express, 2018, 26(23): 30862–30872

    [25] [25] Lee S C, Ng S S, Abu Hassan H, Hassan Z, Dumelow T. Calculation of dispersion of surface and interface phonon polariton resonances in wurtzite nsemiconductor multilayer system taking damping effects into accout. Thin Solid Films, 2014, 551: 114–119.

    Tools

    Get Citation

    Copy Citation Text

    Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, Changhong CHEN. Interface phonon polariton coupling to enhance graphene absorption[J]. Frontiers of Optoelectronics, 2021, 14(4): 445

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Aug. 3, 2019

    Accepted: Oct. 8, 2019

    Published Online: Jan. 10, 2022

    The Author Email: Changhong CHEN (ch_chen@hust.edu.cn)

    DOI:10.1007/s12200-019-0957-7

    Topics