Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1816(2025)

Theoretical Design of Catalysts for Neutral Zinc-Air Batteries

SUN Zhongxian, ZHANG Bao, and SUN Wei
Author Affiliations
  • School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    References(34)

    [1] [1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928–935.

    [2] [2] ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chem Rev, 2022, 122(22): 16610–16751.

    [3] [3] FARIVAR G G, MANALASTAS W, TAFTI H D, et al. Grid-connected energy storage systems: State-of-the-art and emerging technologies[J]. Proc IEEE, 2023, 111(4): 397–420.

    [4] [4] YANG C Y, XIA J L, CUI C Y, et al. All-temperature zinc batteries with high-entropy aqueous electrolyte[J]. Nat Sustain, 2023, 6: 325–335.

    [5] [5] LIU J N, ZHAO C X, WANG J, et al. A brief history of zinc–air batteries: 140 years of epic adventures[J]. Energy Environ Sci, 2022, 15(11): 4542–4553.

    [6] [6] WANG Q C, KAUSHIK S, XIAO X, et al. Sustainable zinc-air battery chemistry: Advances, challenges and prospects[J]. Chem Soc Rev, 2023, 52(17): 6139–6190.

    [7] [7] MAINAR A R, LEONET O, BENGOECHEA M, et al. Alkaline aqueous electrolytes for secondary zinc–air batteries: An overview[J]. Int J Energy Res, 2016, 40(8): 1032–1049.

    [8] [8] TURNEY D E, GALLAWAY J W, YADAV G G, et al. Rechargeable zinc alkaline anodes for long-cycle energy storage[J]. Chem Mater, 2017, 29(11): 4819–4832.

    [9] [9] SUN W, KPERS V, WANG F, et al. A non-alkaline electrolyte for electrically rechargeable zinc-air batteries with long-term operation stability in ambient air[J]. Angew Chem Int Ed, 2022, 61(38): e202207353.

    [10] [10] CAO L S, LI D, POLLARD T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nat Nanotechnol, 2021, 16(8): 902–910.

    [11] [11] CHEN S, JI D L, CHEN Q W, et al. Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries[J]. Nat Commun, 2023, 14(1): 3526.

    [12] [12] ZHANG Q, MA Y, LU Y, et al. Halogenated Zn2+ solvation structure for reversible Zn metal batteries[J]. J Am Chem Soc, 2022, 144(40): 18435–18443.

    [13] [13] WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nat Mater, 2018, 17: 543–549.

    [14] [14] ZHANG W, ZHANG J W, WANG N, et al. Two-electron redox chemistryviasingle-atom catalyst for reversible zinc–air batteries[J]. Nat Sustain, 2024, 7: 463–473.

    [15] [15] WU J W, ZHANG B, FAN H J. Asymmetric kosmotropism-stabilized double-layer hydrogel for low-cost neutral zinc-air battery[J]. Small, 2024, 20(48): 2406484.

    [16] [16] AN L, ZHANG Z Y, FENG J R, et al. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte[J]. J Am Chem Soc, 2018, 140(50): 17624–17631.

    [17] [17] SUN W, WANG F, ZHANG B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science, 2021, 371(6524): 46–51.

    [18] [18] AETUKURI N B, MCCLOSKEY B D, GARCA J M, et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries[J]. Nat Chem, 2015, 7(1): 50–56.

    [19] [19] KIM H J, JUNG S C, HAN Y K, et al. An atomic-level strategy for the design of a low overpotential catalyst for Li−O2 batteries[J]. Nano Energy, 2015, 13: 679–686.

    [20] [20] TAN G Q, CHONG L N, ZHAN C, et al. Insights into structural evolution of lithium peroxides with reduced charge overpotential in Li–O2 system[J]. Adv Energy Mater, 2019, 9(27): 1900662.

    [21] [21] LU J Y, DEY S, TEMPRANO I, et al. Co3O4-catalyzed LiOH chemistry in Li–O2 batteries[J]. ACS Energy Lett, 2020, 5(12): 3681–3691.

    [22] [22] GAO R, YANG Z Z, ZHENG L R, et al. Enhancing the catalytic activity of Co3O4 for Li–O2 batteries through the synergy of surface/interface/doping engineering[J]. ACS Catal, 2018, 8(3): 1955–1963.

    [23] [23] WANG F M, QIU K, ZHANG W, et al. Mesoporous carbon for high-performance near-neutral zinc-air batteries[J]. Small, 2024, 20(1): e2304558.

    [24] [24] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Phys Rev B Condens Matter, 1993, 47(1): 558–561.

    [25] [25] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.

    [26] [26] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [27] [27] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurateab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys, 2010, 132(15): 154104.

    [28] [28] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188–5192.

    [29] [29] ONG S P, RICHARDS W D, JAIN A, et al. Python materials genomics (pymatgen): A robust, open-source Python library for materials analysis[J]. Comput Mater Sci, 2013, 68: 314–319.

    [30] [30] BENDAVID L I, CARTER E A. CO2Adsorption on Cu2O(111): A DFT+U and DFT-D study[J]. J Phys Chem C, 2013, 117(49): 26048–26059.

    [31] [31] MOMMA K, IZUMI F.VESTA3for three-dimensional visualization of crystal, volumetric and morphology data[J]. J Appl Crystallogr, 2011, 44(6): 1272–1276.

    [32] [32] KRISHNAMURTHY D, HANSEN H A, VISWANATHAN V. Universality in nonaqueous alkali oxygen reduction on metal surfaces: Implications for Li–O2 and Na–O2 batteries[J]. ACS Energy Lett, 2016, 1(1): 162–168.

    [33] [33] PREZ-RAMREZ J, LPEZ N. Strategies to break linear scaling relationships[J]. Nat Catal, 2019, 2: 971–976.

    [34] [34] CHEN C Y, MATSUMOTO K, KUBOTA K, et al. A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries[J]. Adv Energy Mater, 2019, 9(22): 1900196

    Tools

    Get Citation

    Copy Citation Text

    SUN Zhongxian, ZHANG Bao, SUN Wei. Theoretical Design of Catalysts for Neutral Zinc-Air Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1816

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 26, 2024

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240822

    Topics