Acta Optica Sinica, Volume. 34, Issue 11, 1127001(2014)
Photonic Bandgap Based on Spontaneously Generated Coherence in Atomic Lattices
[1] [1] M O Scully, S Y Zhu, A Gravrielides. Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing [J]. Phys Rev Lett, 1989, 62(24): 2813-2816.
[3] [3] S E Harris. Electromagnetically induced transparency [J]. Phys Today, 1997, 50(7): 36-42.
[4] [4] M Fleischhauer, A Imamoglu, J P Marangos. Electromagnetically induced transparency: Optics in coherent media [J]. Rev Mod Phys, 2005, 77(2): 633-673.
[5] [5] L V Hau, S E Harris, Z Dutton, et al.. Light speed reduction to 17 metres per second in an ultracold atomic gas [J]. Nature, 1999, 397(6720): 594-598.
[7] [7] M Fleischhauer, M D Lukin. Dark-state polaritons in electromagnetically induced transparency [J]. Phys Rev Lett, 2000, 84(22): 5094.
[8] [8] Huang Shanguo, Gu Wanyi, Ma Haiqiang. Effects of detuning on the storage of a light pulse in an ultracold atomic medium [J]. Acta Physica Sinica, 2004, 53(12): 4211-4217.
[10] [10] M Artoni, G C La Rocca. Optically tunable photonic stop bands in homogeneous absorbing media [J]. Phys Rev Lett, 2006, 96(7): 073905.
[11] [11] J H Wu, G C La Rocca, M Artoni. Controlled light-pulse propagation in driven color centers in diamond [J]. Phys Rev B, 2008, 77(11): 113106.
[12] [12] Ba Nuo, Wu Xiangyao, Liu Xiaojing, et al.. Tunable triple photonic band-gaps based on coherent induction in a five-level 87Rb atomic system [J]. Acta Optica Sinica, 2012, 32(8): 0827001.
[13] [13] M Bajcsy, A S Zibrov, M D Lukin. Stationary pulses of light in an atomic medium [J]. Nature, 2003, 426(6967): 638-641.
[14] [14] Y Zhang, Y Zhang, X H Zhang, et al.. Efficient generation and control of robust stationary light signals in a double-Λ system of cold atoms [J]. Phys Lett A, 2012, 376(4): 656-661.
[15] [15] J H Wu, M Artoni, G C La Rocca. All-optical light confinement in dynamic cavities in cold atoms [J]. Phys Rev Lett, 2009, 103(13): 133601.
[16] [16] J W Gao, J H Wu, N Ba, et al.. Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps [J]. Phys Rev A, 2010, 81(1): 013804.
[17] [17] R G Wan, J Kou, L Jiang, et al.. Magneto-optical switching and routing via coherently induced photonic band gaps in a driven Fe=0Fg=1 transition [J]. J Phys B, 2011, 44(6): 065502.
[18] [18] A Schilke, C Zimmermann, P W Courteille, et al.. Photonic band gaps in one-dimensionally ordered cold atomic vapors [J]. Phys Rev Lett, 2011, 106(22): 223903.
[19] [19] A Schilke, C Zimmermann, W Guerin. Photonic properties of one-dimensionally-ordered cold atomic vapors under conditions of electromagnetically induced transparency [J]. Phys Rev A, 2012, 86(2): 023809.
[20] [20] H Yang, L Yang, X C Wang, et al.. Dynamically controlled two-color photonic band gaps via balanced four-wave mixing in one-dimensional cold atomic lattices [J]. Phys Rev A, 2013, 88(6): 063832.
[21] [21] Ba Nuo, Wang Lei, Zhang Yan. Tunable three photonic band-gaps coherently induced in one-dimension cold atomic lattices [J]. Acta Physica Sinica, 2014, 63(3): 034209.
[22] [22] A Schilke, C Zimmermann, P W Courteille, et al.. Optical parametric oscillation with distributed feedback in cold atoms [J]. Nature Photonics, 2012, 6(2): 101-104.
[23] [23] J H Wu, S A R Horsley, M Artoni, et al.. Radiation damping optical enhancement in cold atoms [J]. Light Sci Appl, 2013, 2(2): e54.
[24] [24] S A R Horsley, J H Wu, M Artoni, et al.. Optical nonreciprocity of cold atom Bragg mirrors in motion [J]. Phys Rev Lett, 2013, 110(22): 223602.
[25] [25] C Ottaviani, D Vitali, M Artoni, et al.. Polarization qubit phase gate in driven atomic media [J]. Phys Rev Lett, 2003, 90(19): 197902.
[26] [26] N Ba, R G Wan, B N Jiang, et al.. Polarization phase gate and three-photon GHz state using coherently enhanced Kerr nonlinearity [J]. Opt Commun, 2010, 283(6): 1017-1021.
[27] [27] S E Harris, Y Yamamoto. Photon switching by quantum interference [J]. Phys Rev Lett, 1998, 81(17): 3611-3614.
[28] [28] M Yan, E G Rickey, Y F Zhu. Observation of absorptive photon switching by quantum interference [J]. Phys Rev A, 2001, 64(4): 041801.
[29] [29] Y Wu, L Deng. Ultraslow optical solitons in a cold four-state medium [J]. Phys Rev Lett, 2004, 93(14): 143904.
[30] [30] G X Huang, C Hang, L Deng. Gain-assisted superluminal optical solitons at very low light intensity [J]. Phys Rev A, 2008, 77(1): 011803.
[31] [31] S E Harris. Lasers without inversion: Interference of lifetime-broadened resonances [J]. Phys Rev Lett, 1989, 62(9): 1033-1036.
[32] [32] S Y Zhu, M O Scully. Spectral line elimination and spontaneous emission cancellation via quantum interference [J]. Phys Rev Lett, 1996, 76(3): 388-391.
[33] [33] Y P Niu, S Q Gong. Enhancing Kerr nonlinearity via spontaneously generated coherence [J]. Phys Rev A, 2006, 73(5): 053811.
[34] [34] R G Wan, J Kou, L Jiang, et al.. Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence [J]. Phys Rev A, 2011, 83(3): 033824.
[35] [35] N Ba, L Wang, X Y Wu, et al.. Electromagnetically induced grating based on the giant Kerr nonlinearity controlled by spontaneously generated coherence [J]. Appl Opt, 2013, 52(18): 4264-4272.
Get Citation
Copy Citation Text
Ba Nuo, Wang Lei, Wu Xiangyao, Li Dongfei, Wang Dan, Yan Liyun. Photonic Bandgap Based on Spontaneously Generated Coherence in Atomic Lattices[J]. Acta Optica Sinica, 2014, 34(11): 1127001
Category: Quantum Optics
Received: May. 12, 2014
Accepted: --
Published Online: Oct. 13, 2014
The Author Email: Nuo Ba (banuo2008@163.com)