Photonics Research, Volume. 9, Issue 8, 1493(2021)
Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers
[1] T. Zhou, L. Fang, T. Yan, J. Wu, Y. Li, J. Fan, H. Wu, X. Lin, Q. Dai.
[2] Y. Chang, H. Wu, C. Zhao, L. Shen, S. Fu, M. Tang. Distributed Brillouin frequency shift extraction via a convolutional neural network. Photon. Res., 8, 690-697(2020).
[3] Z. Tao, J. Zhang, J. You, H. Hao, H. Ouyang, Q. Yan, S. Du, Z. Zhao, Q. Yang, X. Zheng, T. Jiang. Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials. Nanophotonics, 9, 2945-2956(2020).
[4] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).
[5] H. Lin, J. Xie, T. Fan, Y. He, J. Chen, H. Zhang, S. Zhuo. Rapid prediction of drug inhibition under heat stress: single-photon imaging combined with a convolutional neural network. Nanoscale, 12, 23134-23139(2020).
[6] Z. Tao, J. You, J. Zhang, X. Zheng, H. Liu, T. Jiang. Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network. Opt. Lett., 45, 1403-1406(2020).
[7] J. Li, D. Mengu, Y. Luo, Y. Rivenson, A. Ozcan, T. Jiang. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photon., 1, 046001(2019).
[8] S. Feng, Q. Chen, G. Gu, T. Tao, L. Zhang, Y. Hu, W. Yin, C. Zuo. Fringe pattern analysis using deep learning. Adv. Photon., 1, 025001(2019).
[9] Y. Li. Deep reinforcement learning: an overview(2017).
[10] J. Ma, Z. Piao, S. Huang, X. Duan, G. Qin, L. Zhou, Y. Xu. Monte Carlo simulation fused with target distribution modeling via deep reinforcement learning for automatic high-efficiency photon distribution estimation. Photon. Res., 9, B45-B56(2021).
[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis. Human-level control through deep reinforcement learning. Nature, 518, 529-533(2015).
[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra. Continuous control with deep reinforcement learning(2015).
[13] Y. Han, S. Xiang, Y. Wang, Y. Ma, B. Wang, A. Wen, Y. Hao. Generation of multi-channel chaotic signals with time delay signature concealment and ultrafast photonic decision making based on a globally-coupled semiconductor laser network. Photon. Res., 8, 1792-1799(2020).
[14] G. Genty, L. Salmela, J. M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, S. K. Turitsyn. Machine learning and applications in ultrafast photonics. Nat. Photonics, 15, 91-101(2020).
[15] G. Pu, L. Zhang, W. Hu, L. Yi. Automatic mode-locking fiber lasers: progress and perspectives. Sci. China Inf. Sci., 63, 160404(2020).
[16] T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang, R. Miao, C. Zhang, K. Wei, H. Li, H. Chen, R. Zhang, X. Zheng, Z. Xu, X. Cheng, H. Zhang. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photon. Res., 8, 78-90(2020).
[17] K. Yin, Y. Li, Y. Wang, X. Zheng, T. Jiang. Self-starting all-fiber PM Er:laser mode locked by a biased nonlinear amplifying loop mirror. Chin. Phys. B, 28, 124203(2019).
[18] J. Zou, C. Dong, H. Wang, T. Du, Z. Luo. Towards visible-wavelength passively mode-locked lasers in all-fibre format. Light Sci. Appl., 9, 61(2020).
[19] X. Zhao, T. Li, Y. Liu, Q. Li, Z. Zheng. Polarization-multiplexed, dual-comb all-fiber mode-locked laser. Photon. Res., 6, 853-857(2018).
[20] R. Miao, M. Tong, K. Yin, H. Ouyang, Z. Wang, X. Zheng, T. Jiang. Soliton mode-locked fiber laser with high-quality MBE-grown Bi2Se3 film. Chin. Opt. Lett., 17, 071403(2019).
[21] W. Li, C. Zhu, X. Rong, J. Wu, H. Xu, F. Wang, Z. Luo, Z. Cai. Bidirectional red-light passively
[22] J. Liu, J. Wu, H. Chen, Y. Chen, Z. Wang, C. Ma, H. Zhang. Short-pulsed Raman fiber laser and its dynamics. Sci. China Phys. Mech. Astron., 64, 214201(2020).
[23] D. Huang, C. Shang, F. Li, Z. Cheng, X. Zhang, Z. Kang, X. Feng, P. Wai. Discrete Fourier domain harmonically mode locked laser by mode hopping modulation. 24th Opto-Electronics and Communications Conference (OECC) and International Conference on Photonics in Switching and Computing (PSC), 1-3(2019).
[24] D. G. Winters, M. S. Kirchner, S. J. Backus, H. C. Kapteyn. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Opt. Express, 25, 33216-33225(2017).
[25] G. Pu, L. Yi, L. Zhang, W. Hu. Genetic algorithm-based fast real-time automatic mode-locked fiber laser. IEEE Photon. Technol. Lett., 32, 7-10(2019).
[26] G. Pu, L. Yi, L. Zhang, C. Luo, Z. Li, W. Hu. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light Sci. Appl., 9, 13(2020).
[27] U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, P. Grelu. Toward an autosetting mode-locked fiber laser cavity. J. Opt. Soc. Am. B, 33, 825-833(2016).
[28] X. Fu, J. N. Kutz. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. Opt. Express, 21, 6526-6537(2013).
[29] A. Kokhanovskiy, A. Bednyakova, E. Kuprikov, A. Ivanenko, M. Dyatlov, D. Lotkov, S. Kobtsev, S. Turitsyn. Machine learning-based pulse characterization in figure-eight mode-locked lasers. Opt. Lett., 44, 3410-3413(2019).
[30] T. Hellwig, T. Walbaum, P. Groß, C. Fallnich. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation. Appl. Phys. B, 101, 565-570(2010).
[31] S. L. Brunton, X. Fu, J. N. Kutz. Extremum-seeking control of a mode-locked laser. IEEE J. Quantum Electron., 49, 852-861(2013).
[32] J. N. Kutz, S. L. Brunton. Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics. Nanophotonics, 4, 459-471(2015).
[33] F. Meng, J. M. Dudley. Toward a self-driving ultrafast fiber laser. Light Sci. Appl., 9, 26(2020).
[34] X. Shen, W. Li, M. Yan, H. Zeng. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers. Opt. Lett., 37, 3426-3428(2012).
[35] S. L. Brunton, X. Fu, J. N. Kutz. Self-tuning fiber lasers. IEEE J. Sel. Top. Quantum Electron., 20, 464-471(2014).
[36] X. Fu, S. L. Brunton, J. N. Kutz. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt. Express, 22, 8585-8597(2014).
[37] T. Baumeister, S. L. Brunton, J. N. Kutz. Deep learning and model predictive control for self-tuning mode-locked lasers. J. Opt. Soc. Am. B, 35, 617-626(2018).
[38] C. Sun, E. Kaiser, S. L. Brunton, J. N. Kutz. Deep reinforcement learning for optical systems: a case study of mode-locked lasers. Mach. Learn. Sci. Technol., 1, 045013(2020).
[39] R. Woodward, E. J. Kelleher. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm. Sci. Rep., 6, 37616(2016).
[40] R. I. Woodward, E. J. R. Kelleher. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers. Opt. Lett., 42, 2952-2955(2017).
[41] G. Pu, L. Yi, L. Zhang, W. Hu. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362-369(2019).
[42] U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, P. Grelu. Fiber laser mode locked through an evolutionary algorithm. Optica, 2, 275-278(2015).
[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga. PyTorch: an imperative style, high-performance deep learning library(2019).
[44] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).
[45] X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, F. Wang. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep., 3, 2718(2013).
Get Citation
Copy Citation Text
Qiuquan Yan, Qinghui Deng, Jun Zhang, Ying Zhu, Ke Yin, Teng Li, Dan Wu, Tian Jiang, "Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers," Photonics Res. 9, 1493 (2021)
Category: Lasers and Laser Optics
Received: Apr. 19, 2021
Accepted: Jun. 6, 2021
Published Online: Jul. 22, 2021
The Author Email: Tian Jiang (tjiang@nudt.edu.cn)