Acta Optica Sinica, Volume. 43, Issue 21, 2100001(2023)
Progress on Flexible Perovskite Light-Emitting Diodes
[1] Cai W S, Li H Y, Li M C et al. Opportunities and challenges of inorganic perovskites in high-performance photodetectors[J]. Journal of Physics D, 54, 293002(2021).
[2] Hassan Y, Park J H, Crawford M L et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs[J]. Nature, 591, 72-77(2021).
[3] Liu X K, Xu W D, Bai S et al. Metal halide perovskites for light-emitting diodes[J]. Nature Materials, 20, 10-21(2021).
[4] Cao Y, Wang N N, Tian H et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 562, 249-253(2018).
[5] Chiba T, Hayashi Y, Ebe H et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nature Photonics, 12, 681-687(2018).
[6] Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20%[J]. Nature, 562, 245-248(2018).
[7] Zhao B D, Bai S, Kim V et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes[J]. Nature Photonics, 12, 783-789(2018).
[8] Xu W D, Hu Q, Bai S et al. Rational molecular passivation for high-performance perovskite light-emitting diodes[J]. Nature Photonics, 13, 418-424(2019).
[9] Kim T, Kim J H, Park J W. Semi-transparent organic-inorganic hybrid perovskite light-emitting diodes fabricated under high relative humidity[J]. Solid-State Electronics, 165, 107749(2020).
[10] Wang J T, Wang S Z, Zhou Y H et al. Flexible perovskite light-emitting diodes: progress, challenges and perspective[J]. Science China Materials, 66, 1-21(2023).
[11] Kim Y H, Cho H, Heo J H et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes[J]. Advanced Materials, 27, 1248-1254(2015).
[12] Seo H K, Kim H, Lee J et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode[J]. Advanced Materials, 29, 1605587(2017).
[13] Zhao L F, Rolston N, Lee K M et al. Influence of bulky organo-ammonium halide additive choice on the flexibility and efficiency of perovskite light-emitting devices[J]. Advanced Functional Materials, 28, 1802060(2018).
[14] Shen Y, Li M N, Li Y Q et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes[J]. ACS Nano, 14, 6107-6116(2020).
[15] Jia P, Lu M, Sun S Q et al. Recent advances in flexible perovskite light-emitting diodes[J]. Advanced Materials Interfaces, 8, 2100441(2021).
[16] Du P P, Gao L, Tang J. Focus on performance of perovskite light-emitting diodes[J]. Frontiers of Optoelectronics, 13, 235-245(2020).
[17] Bhaumik S, Kar M R, Thorat B N et al. Vacuum-processed metal halide perovskite light-emitting diodes: prospects and challenges[J]. ChemPlusChem, 86, 558-573(2021).
[18] Zhang D Q, Zhang Q P, Ren B T et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires[J]. Nature Photonics, 16, 284-290(2022).
[19] Stoumpos C C, Kanatzidis M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of Chemical Research, 48, 2791-2802(2015).
[20] Liu Z, Li C, Shang Q Y et al. Research progress of low-dimensional metal halide perovskites for lasing applications[J]. Chinese Physics B, 27, 114209(2018).
[21] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX₃, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015).
[22] Xing G C, Mathews N, Lim S S et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 13, 476-480(2014).
[23] Stranks S D, Eperon G E, Grancini G et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 342, 341-344(2013).
[24] Xing G C, Mathews N, Sun S Y et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 342, 344-347(2013).
[25] Herz L M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits[J]. ACS Energy Letters, 2, 1539-1548(2017).
[26] Stolterfoht M, Armin A, Shoaee S et al. Slower carriers limit charge generation in organic semiconductor light-harvesting systems[J]. Nature Communications, 7, 11944(2016).
[27] Chen Z, Zhou B Z, Yuan J H et al. Cu2+-doped CsPbI3 nanocrystals with enhanced stability for light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 12, 3038-3045(2021).
[28] Shen X Y, Zhang Y, Kershaw S V et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices[J]. Nano Letters, 19, 1552-1559(2019).
[29] Lu M, Guo J, Sun S Q et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification[J]. Nano Letters, 20, 2829-2836(2020).
[30] Zhang D Z, Fu Y X, Zhan H M et al. Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes[J]. Light: Science & Applications, 11, 69(2022).
[31] Fang T, Wang T T, Li X S et al. Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport[J]. Science Bulletin, 66, 36-43(2021).
[32] Cao F, You M Q, Kong L M et al. Mixed-dimensional MXene-based composite electrodes enable mechanically stable and efficient flexible perovskite light-emitting diodes[J]. Nano Letters, 22, 4246-4252(2022).
[33] Qian X Y, Shen Y, Zhang L J et al. Bio-inspired pangolin design for self-healable flexible perovskite light-emitting diodes[J]. ACS Nano, 16, 17973-17981(2022).
[34] Jung D H, Park J H, Lee H E et al. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes[J]. Nano Energy, 61, 236-244(2019).
[35] Sun S Q, Jia P, Lu M et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material[J]. Advanced Functional Materials, 32, 2204286(2022).
[36] Lu J X, Guan X, Li Y Q et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes[J]. Advanced Materials, 33, 2104414(2021).
[37] Yan F L, Yuan C S, Li C et al. FOSquare: a novel optical HPC interconnect network architecture based on fast optical switches with distributed optical flow control[J]. Photonics, 8, 11(2021).
[38] Makming P, Homnan S, Ngamjarurojana A et al. Efficient and stable carbon-based perovskite solar cells enabled by mixed CuPc∶CuSCN hole transporting layer for indoor applications[J]. ACS Applied Materials & Interfaces, 15, 15486-15497(2023).
[39] Wang C, Guo P C, Jiang H D et al. Application of transparent fluorphlogopite substrate in flexible electromagnetic devices[J]. Advanced Engineering Materials, 25, 2201105(2023).
[40] Zardetto V, Brown T M, Reale A et al. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties[J]. Journal of Polymer Science Part B, 49, 638-648(2011).
[41] Wang M H, Feng Y L, Dong Q S et al. Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 based flexible perovskite light-emitting devices with excellent mechanical bending durability[J]. Chemical Physics Letters, 723, 33-38(2019).
[42] Long J A, Huang Z Q, Zhang J Q et al. Flexible perovskite solar cells: device design and perspective[J]. Flexible and Printed Electronics, 5, 013002(2020).
[43] Kumar S, Jagielski J, Kallikounis N et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates[J]. Nano Letters, 17, 5277-5284(2017).
[44] Li Y F, Chou S Y, Huang P et al. Stretchable organometal-halide-perovskite quantum-dot light-emitting diodes[J]. Advanced Materials, 31, 1807516(2019).
[45] Cruz S M F, Rocha L A, Viana L C. Printing technologies on flexible substrates for printed electronics[M]. Rackauskas S. Flexible electronics(2018).
[46] Jin J, Lee D, Im H G et al. Chitin nanofiber transparent paper for flexible green electronics[J]. Advanced Materials, 28, 5169-5175(2016).
[47] Fuad A, Fibriyanti A A, Mufti N et al. Growth of CH3NH3PbI3 perovskite on stainless steel substrate layered by ZnO nanoparticles using one-step spin coating route[J]. Journal of Physics: Conference Series, 1011, 012011(2018).
[48] Huang Z R, Proppe A H, Tan H R et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability[J]. ACS Energy Letters, 4, 1521-1527(2019).
[49] Dou B J, Miller E M, Christians J A et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO[J]. The Journal of Physical Chemistry Letters, 8, 4960-4966(2017).
[50] Linnet J, Walther A R, Wolff C et al. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films[J]. Optical Materials Express, 8, 1733-1746(2018).
[51] Wu H, Zhang Y, Zhang X Y et al. Fine-tuned multilayered transparent electrode for highly transparent perovskite light-emitting devices[J]. Advanced Electronic Materials, 4, 1700285(2018).
[52] Liu M L, Jiang N Z, Huang H et al. Ni2+-doped CsPbI3 perovskite nanocrystals with near-unity photoluminescence quantum yield and superior structure stability for red light-emitting devices[J]. Chemical Engineering Journal, 413, 127547(2021).
[53] Liu Y S, Guo S A, Yi F S et al. Highly flexible organic-inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode[J]. Optics Letters, 43, 5524-5527(2018).
[54] Zhang C, Huang Q Y, Cui Q Y et al. High-performance large-scale flexible optoelectronics using ultrathin silver films with tunable properties[J]. ACS Applied Materials & Interfaces, 11, 27216-27225(2019).
[55] Hou S P, Liu J E, Shi F P et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes[J]. Frontiers in Chemistry, 10, 864186(2022).
[56] Wang L, Wang Y. Perovskites for printed flexible electronics[J]. IOP Conference Series: Materials Science and Engineering, 892, 012011(2020).
[57] Kang H, Choi S R, Kim Y H et al. Electroplated silver-nickel core-shell nanowire network electrodes for highly efficient perovskite nanoparticle light-emitting diodes[J]. ACS Applied Materials & Interfaces, 12, 39479-39486(2020).
[58] Cai L, Li J Z, Luan P S et al. Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture[J]. Advanced Functional Materials, 22, 5238-5244(2012).
[59] Kim K S, Zhao Y, Jang H et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 457, 706-710(2009).
[60] Kang J M, Kim H, Kim K S et al. High-performance graphene-based transparent flexible heaters[J]. Nano Letters, 11, 5154-5158(2011).
[61] Yang Y, Deng H, Fu Q. Recent progress on PEDOT∶PSS based polymer blends and composites for flexible electronics and thermoelectric devices[J]. Materials Chemistry Frontiers, 4, 3130-3152(2020).
[62] Kim N, Kee S, Lee S H et al. Highly conductive PEDOT∶PSS nanofibrils induced by solution-processed crystallization[J]. Advanced Materials, 26, 2268-2272(2014).
[63] Kirchmeyer S, Reuter K. Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene)[J]. Journal of Materials Chemistry, 15, 2077-2088(2005).
[64] Kim G H, Shao L, Zhang K et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 12, 719-723(2013).
[65] Vosgueritchian M, Lipomi D J, Bao Z A. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes[J]. Advanced Functional Materials, 22, 421-428(2012).
[66] Jeong S H, Woo S H, Han T H et al. Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency[J]. NPG Asia Materials, 9, e411(2017).
[67] Lee S Y, Nam Y S, Yu J C et al. Highly efficient flexible perovskite light-emitting diodes using the modified PEDOT: PSS hole transport layer and polymer-silver nanowire composite electrode[J]. ACS Applied Materials & Interfaces, 11, 39274-39282(2019).
[68] Kim Y H, Kim S, Kakekhani A et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes[J]. Nature Photonics, 15, 148-155(2021).
[69] Hao F, Stoumpos C C, Guo P J et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells[J]. Journal of the American Chemical Society, 137, 11445-11452(2015).
[70] Shen D H, Yu X, Cai X et al. Understanding the solvent-assisted crystallization mechanism inherent in efficient organic-inorganic halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2, 20454-20461(2014).
[71] Paek S, Cho N, Choi H et al. Improved external quantum efficiency from solution-processed (CH3NH3)PbI3 perovskite/PC71BM planar heterojunction for high efficiency hybrid solar cells[J]. The Journal of Physical Chemistry C, 118, 25899-25905(2014).
[72] Kim H B, Choi H, Jeong J et al. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells[J]. Nanoscale, 6, 6679-6683(2014).
[73] Eperon G E, Burlakov V M, Docampo P et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Advanced Functional Materials, 24, 151-157(2014).
[74] Dualeh A, Tétreault N, Moehl T et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells[J]. Advanced Functional Materials, 24, 3250-3258(2014).
[75] Leijtens T, Lauber B, Eperon G E et al. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells[J]. The Journal of Physical Chemistry Letters, 5, 1096-1102(2014).
[76] Wang Q, Shao Y C, Dong Q F et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy & Environmental Science, 7, 2359-2365(2014).
[77] Liang P W, Liao C Y, Chueh C C et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 26, 3748-3754(2014).
[78] Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. The Journal of Physical Chemistry C, 118, 9412-9418(2014).
[79] Cho H, Jeong S H, Park M H et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes[J]. Science, 350, 1222-1225(2015).
[80] Li J H, Du P P, Li S R et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition[J]. Advanced Functional Materials, 29, 1903607(2019).
[81] Chen C, Han T H, Tan S et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization[J]. Nano Letters, 20, 4673-4680(2020).
[82] Zhao J Y, Lo L W, Wan H C et al. High-speed fabrication of all-inkjet-printed organometallic halide perovskite light-emitting diodes on elastic substrates[J]. Advanced Materials, 33, 2102095(2021).
[83] Bade S G R, Li J Q, Shan X et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes[J]. ACS Nano, 10, 1795-1801(2016).
[84] Chen C S, Chen J X, Han H C et al. Perovskite solar cells based on screen-printed thin films[J]. Nature, 612, 266-271(2022).
[85] Cheng L P, Huang J S, Shen Y et al. Efficient CsPbBr3 perovskite light-emitting diodes enabled by synergetic morphology control[J]. Advanced Optical Materials, 7, 1801534(2019).
[86] Chen C S, Li D, Wu Y H et al. Flexible inorganic CsPbI3 perovskite nanocrystal-PMMA composite films with enhanced stability in air and water for white light-emitting diodes[J]. Nanotechnology, 31, 225602(2020).
[87] Zhao F C, Chen D, Chang S et al. Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire-polymer composite electrode[J]. Journal of Materials Chemistry C, 5, 531-538(2017).
[88] Zang J Q, Cai L, Zou Y T et al. Self-healing perovskite films enabled by fluorinated cross-linked network targeting flexible light-emitting diode[J]. Advanced Optical Materials, 10, 2200566(2022).
[89] Niu J Z, Yang D, Ren X D et al. Graphene-oxide doped PEDOT: PSS as a superior hole transport material for high-efficiency perovskite solar cell[J]. Organic Electronics, 48, 165-171(2017).
[90] Zhao X F, Tan Z K. Large-area near-infrared perovskite light-emitting diodes[J]. Nature Photonics, 14, 215-218(2020).
[91] Zeng J J, Qi Y H, Liu Y et al. ZnO-based electron-transporting layers for perovskite light-emitting diodes: controlling the interfacial reactions[J]. The Journal of Physical Chemistry Letters, 13, 694-703(2022).
[92] Lee S Y, Kim S H, Nam Y S et al. Flexibility of semitransparent perovskite light-emitting diodes investigated by tensile properties of the perovskite layer[J]. Nano Letters, 19, 971-976(2019).
[93] Kim H, Ra H N, Kim J S et al. Improved performance of flexible perovskite light-emitting diodes with modified PEDOT∶PSS hole transport layer[J]. Journal of Industrial and Engineering Chemistry, 90, 117-121(2020).
[94] Richter J M, Abdi-Jalebi M, Sadhanala A et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling[J]. Nature Communications, 7, 13941(2016).
[95] Hong K, Lee J L. Review paper: recent developments in light extraction technologies of organic light emitting diodes[J]. Electronic Materials Letters, 7, 77-91(2011).
[96] Xu R P, Li Y Q, Tang J X. Recent advances in flexible organic light-emitting diodes[J]. Journal of Materials Chemistry C, 4, 9116-9142(2016).
[97] Zhou L, Xiang H Y, Shen S et al. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes[J]. ACS Nano, 8, 12796-12805(2014).
[98] Zhang Q P, Zhang D Q, Fu Y et al. Light out-coupling management in perovskite LEDs: what can we learn from the past?[J]. Advanced Functional Materials, 30, 2002570(2020).
[99] Zhang Q P, Tavakoli M M, Gu L L et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates[J]. Nature Communications, 10, 727(2019).
[100] Jeon S, Zhao L F, Jung Y J et al. Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray[J]. Small, 15, 1900135(2019).
Get Citation
Copy Citation Text
Yiming Liu, Yonghua Chen, Wei Huang. Progress on Flexible Perovskite Light-Emitting Diodes[J]. Acta Optica Sinica, 2023, 43(21): 2100001
Category: Reviews
Received: May. 4, 2023
Accepted: Jun. 30, 2023
Published Online: Nov. 16, 2023
The Author Email: Chen Yonghua (iamyhchen@njtech.edu.cn), Huang Wei (iamwhuang@njtech.edu.cn)