Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1410015(2021)

Low-Illumination Image Enhancement Algorithm Based on Parallel Residual Network

Qingjiang Chen, Jinyang Li*, and Qiannan Hu
Author Affiliations
  • School of Science, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
  • show less
    Figures & Tables(16)
    Structure of residual learning model
    Structure of parallel residual network model
    InceptionNet V1 network structure used in this paper
    Alternating residual model and local global residual model
    Comparison of subjective visual results for different combinations of loss functions
    Comparision of subjective visual results between our algorithm and seven contrast algorithms on real dataset
    Comparision of subjective visual results between our algorithm and seven contrast algorithms on synthetic dataset
    Comparison of subjective visual results of different algorithms on low-illumination images without contrast map
    Three comparative model structures
    Comparison of subjective visual results of four model structures
    • Table 1. Calculation results of PSNR and SSIM for different combinations of loss functions

      View table

      Table 1. Calculation results of PSNR and SSIM for different combinations of loss functions

      LossPSNRSSIM
      L'123.0390.7947
      L'224.8330.8269
      L'327.1490.8434
      L'427.3750.8807
    • Table 2. PSNR and SSIM of our algorithm and seven contrast algorithms on real dataset

      View table

      Table 2. PSNR and SSIM of our algorithm and seven contrast algorithms on real dataset

      ImageEvaluation indexMethod
      SSRMSRCRYingRenBIMEFLIMELiOur
      Image1PSNR /dB12.05917.84414.41211.88418.41221.34520.44728.331
      SSIM0.60130.57940.59690.68350.64690.78980.72590.8997
      Image2PSNR/dB13.46914.00720.89114.55814.82923.96822.42431.087
      SSIM0.59740.57430.75590.82320.60010.85590.70680.9365
      Image3PSNR/dB18.61221.04115.98210.92011.70617.70021.34630.112
      SSIM0.78100.73460.83210.65600.68260.72090.78810.9331
      Image4PSNR/dB15.93113.70620.566214.78015.39424.35517.85825.914
      SSIM0.65810.48310.64050.65040.56740.83340.68490.8343
    • Table 3. PSNR and SSIM of our algorithm and seven contrast algorithms on synthetic dataset

      View table

      Table 3. PSNR and SSIM of our algorithm and seven contrast algorithms on synthetic dataset

      ImageEvaluation indexMethod
      SSRMSRCRYingLiRenBIMEFLIMEOur
      Image1PSNR /dB11.84113.08519.50117.41513.60113.86326.41729.053
      SSIM0.66560.68020.72730.77780.52210.70880.83630.8416
      Image2PSNR /dB11.25311.67422.29319.00215.95116.21823.83029.959
      SSIM0.60310.62400.78870.80490.65410.76530.83230.8746
      Image3PSNR /dB9.880510.94621.45016.57817.09320.70420.30726.423
      SSIM0.54830.56900.68630.66750.48140.76870.77250.8073
      Image4PSNR /dB12.74613.86815.87115.76911.28711.61320.69926.085
      SSIM0.56810.60060.67150.76190.49960.65130.81290.8318
    • Table 4. Information entropy, NRSS and NIQE of low-illumination images without contrast map

      View table

      Table 4. Information entropy, NRSS and NIQE of low-illumination images without contrast map

      MethodEvaluation indexNRSSNIQE
      Image1Image2Image3AverageImage1Image2Image3AverageImage1Image2Image3Average
      SSR6.36357.00937.01776.79680.42080.64080.45110.504221.54330.23728.73526.838
      MSRCR6.25537.15037.18586.83050.41680.64370.48470.412521.17323.28213.11119.189
      Ying4.97716.48086.86226.86380.29630.50070.44060.51519.35211.7699.2110.11
      Li4.77065.60656.58995.65570.36140.49610.39480.417411.51312.0749.92711.171
      Ren4.21155.63186.11825.32050.35590.34420.21840.30629.92717.35111.73813.005
      BIMEF5.30036.49056.81056.20040.34450.62660.52770.49968.79317.85513.2613.303
      LIME5.93616.2747.1536.45440.43940.64920.32260.47048.34720.27512.7213.781
      Our6.57446.82647.02616.8090.37720.64250.60240.54078.26911.7277.5939.196
    • Table 5. PSNR and SSIM results of four network models

      View table

      Table 5. PSNR and SSIM results of four network models

      ModelPSNR /dBSSIM
      Model129.5520.9026
      Model229.5640.9048
      Model327.9420.8208
      Model426.1470.8321
    • Table 6. Comparison of running time of four models for enhancement of single image

      View table

      Table 6. Comparison of running time of four models for enhancement of single image

      ImageModel
      Model1Model2Model3Model4
      Synthetic image0.65720.83740.59820.6067
      Real image0.64970.86790.58890.6164
    Tools

    Get Citation

    Copy Citation Text

    Qingjiang Chen, Jinyang Li, Qiannan Hu. Low-Illumination Image Enhancement Algorithm Based on Parallel Residual Network[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Oct. 14, 2020

    Accepted: Nov. 14, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Jinyang Li (1057042448@qq.com)

    DOI:10.3788/LOP202158.1410015

    Topics