Acta Optica Sinica, Volume. 40, Issue 16, 1611001(2020)
Hyperspectral Image Classification Algorithm Based on Saliency Profile
Fig. 2. Tree structure of image. (a) Original image; (b) min-tree; (c) max-tree; (d) tree of shape
Fig. 3. Calculation process of node attributes. (a) Original image; (b) remove node B; (c) tree of shape before removing node B; (d) tree of shape after removing node B
Fig. 4. Real remote sensing image. (a) Sample images of Aν; (b)(c) change curves of
Fig. 5. Hyperspectral images of Indian Pines dataset. (a) False color composite image; (b) survey results of feature types
Fig. 6. Hyperspectral images of Pavia university dataset. (a) False color composite image; (b) survey results of feature types
Fig. 7. Classification results of different algorithms on Indian Pines dataset. (a) SVM; (b) EMP; (c) EMAP; (d) EEP; (e) SC-MK; (f) ESP
Fig. 8. Classification results of different algorithms on Pavia university dataset. (a) SVM; (b) EMP; (c) EMAP; (d) EEP; (e) SC-MK; (f) ESP
Fig. 9. SP of different feature images on Pavia university dataset. (a) Original image; (b) SP0; (c) SP1; (d) SP2; (e) SP3; (f) SP4; (g) SP5; (h) SP6; (i) SP7; (j) SP8; (k) SP9; (l) SP10
|
|
|
|
|
Get Citation
Copy Citation Text
Xuan Hu, Qikai Lu. Hyperspectral Image Classification Algorithm Based on Saliency Profile[J]. Acta Optica Sinica, 2020, 40(16): 1611001
Category: Imaging Systems
Received: Apr. 3, 2020
Accepted: May. 6, 2020
Published Online: Aug. 7, 2020
The Author Email: Lu Qikai (qikai_lu@hotmail.com)