Chinese Journal of Lasers, Volume. 48, Issue 2, 0202017(2021)
Femtosecond Laser Assembly of One-Dimensional Nanomaterials and Their Application
[1] Yang P, Yan H, Mao S et al. Controlled growth of ZnO nanowires and their optical properties[J]. Advanced Functional Materials, 12, 323-331(2002).
[2] Pan Z, Lai H L. Au F C K, et al. Oriented silicon carbide nanowires: Synthesis and field emission properties[J]. Advanced Materials, 12, 1186-1190(2000).
[3] Chan C K, Peng H, Liu G et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 3, 31-35(2008).
[4] Zhang Y J, Ago H, Liu J et al. The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled[J]. Journal of Crystal Growth, 264, 363-368(2004).
[5] Kou X M, Fan X, Dumas R K et al. Memory effect in magnetic nanowire arrays[J]. Advanced Materials, 23, 1393-1397(2011).
[6] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 277, 1971-1975(1997).
[7] Huang Y. Directed assembly of one-dimensional nanostructures into functional networks[J]. Science, 291, 630-633(2001).
[8] Fan Z, Ho J C, Jacobson Z A et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing[J]. Nano Letters, 8, 20-25(2008).
[9] Wang D, Chang Y L, Liu Z et al. Oxidation resistant germanium nanowires: Bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly[J]. Journal of the American Chemical Society, 127, 11871-11875(2005).
[10] Freer E M, Grachev O, Duan X et al. High-yield self-limiting single-nanowire assembly with dielectrophoresis[J]. Nature Nanotechnology, 5, 525-530(2010).
[11] Hangarter C M, Rheem Y, Yoo B et al. Hierarchical magnetic assembly of nanowires[J]. Nanotechnology, 18, 205305(2007).
[12] Lee J, Wang A, Rheem Y et al. DNA assisted assembly of multisegmented nanowires[J]. Electroanalysis, 19, 2287-2293(2007).
[13] Ushiba S, Shoji S, Masui K et al. Direct laser writing of 3D architectures of aligned carbon nanotubes[J]. Advanced Materials, 26, 5653-5657(2014).
[14] Tan D F, Li Y, Qi F J et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Applied Physics Letters, 90, 071106(2007).
[15] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[16] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 46, 1000001(2019).
[17] Yang X, Sun H L, Yue D M, Wu D et al. Research progress on femtosecond laser fabrication microlens array[J]. Laser & Optoelectronics Progress, 58, 050005(2021).
[18] Li J J, Liu Y, Qu S L. Research progress on optical fiber functional devices fabricated by femtosecond laser micro-nano processing[J]. Laser & Optoelectronics Progress, 57, 111402(2020).
[19] Gan Z, Cao Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9nm feature size[J]. Nature Communications, 4, 2061(2013).
[20] Ishitobi H, Shoji S, Hiramatsu T et al. Two-photon induced polymer nanomovement[J]. Optics Express, 16, 14106-14114(2008).
[21] Sun Z B, Dong X Z, Chen W Q et al. Multicolor polymer nanocomposites: In situ synthesis and fabrication of 3D microstructures[J]. Advanced Materials, 20, 914-919(2008).
[22] Xia H, Wang J, Tian Y et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Advanced Materials, 22, 3204-3207(2010).
[23] Hsieh G W, Wang J J, Ogata K et al. Stretched contact printing of one-dimensional nanostructures for hybrid inorganic-organic field effect transistors[J]. The Journal of Physical Chemistry C, 116, 7118-7125(2012).
[24] Javey A, Nam S, Friedman R S et al. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics[J]. Nano Letters, 7, 773-777(2007).
[25] Lee H, Seong B, Kim J et al. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing[J]. Small, 10, 3918-3922(2014).
[26] Chen S M, Gao H L, Zhu Y B et al. Biomimetic twisted plywood structural materials[J]. National Science Review, 5, 703-714(2018).
[27] Gao H L, Xu L, Long F et al. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating[J]. Angewandte Chemie International Edition, 53, 4561-4566(2014).
[28] Pevzner A, Engel Y, Elnathan R et al. Confinement-guided shaping of semiconductor nanowires and nanoribbons: “writing with nanowires”[J]. Nano Letters, 12, 7-12(2012).
[29] Liu X, Long Y Z, Liao L et al. Large-scale integration of semiconductor nanowires for high-performance flexible electronics[J]. ACS Nano, 6, 1888-1900(2012).
[30] Lin J H, Cretu O, Zhou W et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers[J]. Nature Nanotechnology, 9, 436-442(2014).
[31] Wang S L, He Y H, Fang X S et al. Structure and field-emission properties of sub-micrometer-sized Tungsten-Whisker arrays fabricated by vapor deposition[J]. Advanced Materials, 21, 2387-2392(2009).
[32] Huang X H. El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 128, 2115-2120(2006).
[33] Lee E P, Peng Z M, Cate D M et al. Growing Pt nanowires as a densely packed array on metal gauze[J]. Journal of the American Chemical Society, 129, 10634-10635(2007).
[34] Chen M S, Phang I Y, Lee M R et al. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering[J]. Langmuir, 29, 7061-7069(2013).
[35] Zijlstra P, Paulo P M, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod[J]. Nature Nanotechnology, 7, 379-382(2012).
[36] Chaney S B, Shanmukh S, Dluhy R A et al. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates[J]. Applied Physics Letters, 87, 031908(2005).
[37] Tang L J, Li S, Han F et al. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection[J]. Biosensors and Bioelectronics, 71, 7-12(2015).
[38] Strickland A D, Batt C A. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods[J]. Analytical Chemistry, 81, 2895-2903(2009).
[39] Lan X, Lu X, Shen C et al. Au nanorod helical superstructures with designed chirality[J]. Journal of the American Chemical Society, 137, 457-462(2015).
[40] Guerrero-Martínez A, Auguié B. Alonso-Gómez J L, et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas[J]. Angewandte Chemie International Edition, 50, 5499-5503(2011).
[41] Hartland G V, Besteiro L V, Johns P et al. What's so hot about electrons in metal nanoparticles?[J]. ACS Energy Letters, 2, 1641-1653(2017).
[42] Neira A D, Wurtz G A, Ginzburg P et al. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry[J]. Optics Express, 22, 10987-10994(2014).
[43] Kawata S, Ono A, Verma P. Subwavelength colour imaging with a metallic nanolens[J]. Nature Photonics, 2, 438-442(2008).
[44] Masui K, Shoji S, Asaba K et al. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization[J]. Optics Express, 19, 22786-22796(2011).
[45] Zhang R, Xiao X Z. L C, et al. Assembling of gold nanorods by femtosecond laser fabrication[J]. Acta Physica Sinica, 63, 014206(2014).
[46] Do J, Fedoruk M, Jäckel F et al. Two-color laser printing of individual gold nanorods[J]. Nano Letters, 13, 4164-4168(2013).
[47] Liu Y, Xiong W, Li D W et al. Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures[J]. International Journal of Extreme Manufacturing, 1, 025001(2019).
[48] Chen H Y, Gao Y, Zhang H R et al. Transmission-electron-microscopy study on fivefold twinned silver nanorods[J]. The Journal of Physical Chemistry B, 108, 12038-12043(2004).
[49] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 354, 56-58(1991).
[50] Xiong W, Liu Y, Jiang L J et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication[J]. Advanced Materials, 28, 2002-2009(2016).
[51] Park C, Ounaies Z, Watson K A et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication[J]. Chemical Physics Letters, 364, 303-308(2002).
[52] Kumar S G, Rao K S. Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications[J]. RSC Advances, 5, 3306-3351(2015).
[53] Choi J, Chan S, Joo H et al. Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment[J]. Water Research, 101, 362-369(2016).
[54] Liu X Y, Shan C X, Jiao C et al. Pure ultraviolet emission from ZnO nanowire-based p-n heterostructures[J]. Optics Letters, 39, 422-425(2014).
[55] Zeng Y Y, Pan X H, Lu B et al. Fabrication of flexible self-powered UV detectors based on ZnO nanowires and the enhancement by the decoration of Ag nanoparticles[J]. RSC Advances, 6, 31316-31322(2016).
[56] Tiwale N. Zinc oxide nanowire gas sensors: fabrication, functionalisation and devices[J]. Materials Science and Technology, 31, 1681-1697(2015).
[57] Zhou W, Dai X C, Lieber C M. Advances in nanowire bioelectronics[J]. Reports on Progress in Physics, 80, 016701(2017).
[58] Chen H N, Yang S H. Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems[J]. Nanoscale Horizons, 1, 96-108(2016).
[59] Wu W, Wen X, Wang Z L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging[J]. Science, 340, 952-957(2013).
[60] Wang Z, Pan X M, He Y H et al. Piezoelectric nanowires in energy harvesting applications[J]. Advances in Materials Science and Engineering, 2015, 1-21(2015).
[61] Fonseca R D, Correa D S, Paris E C et al. Fabrication of zinc oxide nanowires/polymer composites by two-photon polymerization[J]. Journal of Polymer Science Part B: Polymer Physics, 52, 333-337(2014).
[62] Long J, Xiong W, Wei C et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing[J]. Nano Letters, 20, 5159-5166(2020).
[63] Johnson J C, Yan H Q, Schaller R D et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires[J]. Nano Letters, 2, 279-283(2002).
[64] Stallinga P. Electronic transport in organic materials: Comparison of band theory with percolation/(variable range) hopping theory[J]. Advanced Materials, 23, 3356-3362(2011).
[65] Waser R, Aono M. Nanoionics-based resistive switching memories[J]. Nature Materials, 6, 833-840(2007).
[66] Jeong D S, Thomas R, Katiyar R S et al. Emerging memories: Resistive switching mechanisms and current status[J]. Reports on Progress in Physics, 75, 076502(2012).
[67] Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Optics Communications, 124, 529-541(1996).
[68] Reece P J, Toe W J, Wang F et al. Characterization of semiconductor nanowires using optical tweezers[J]. Nano Letters, 11, 2375-2381(2011).
Get Citation
Copy Citation Text
Jing Long, Binzhang Jiao, Xuhao Fan, Yuncheng Liu, Leimin Deng, Liangti Qu, Wei Xiong. Femtosecond Laser Assembly of One-Dimensional Nanomaterials and Their Application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202017
Category: laser manufacturing
Received: Aug. 31, 2020
Accepted: Nov. 5, 2020
Published Online: Dec. 24, 2020
The Author Email: Xiong Wei (weixiong@hust.edu.cn)