Laser Technology, Volume. 45, Issue 2, 131(2021)
Fabrication of glass microlens arrays by laser-based technology
[1] [1] YANG J J, LIAO Y Sh, CHEN Ch F. Fabrication of long hexagonal microlens array by applying gray-scale lithography in micro-replication process[J]. Optics Communications, 2007, 270(2): 433-440.
[2] [2] KIM Y K, JU J H, KIM S M. Replication of a glass microlens array using a vitreous carbon mold[J]. Optics Express, 2018, 26(12): 14936-14944.
[3] [3] GRIGALIUNAS V, LAZAUSKAS A, JUCIUS D, et al. Microlens fabrication by 3-D electron beam lithography combined with thermal reflow technique[J]. Microelectronic Engineering, 2016, 164(2): 23-29.
[4] [4] KIM J Y, PFEIFFER K, VOIGT A, et al. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique[J]. Journal of Materials Chemistry, 2012, 22(7): 3053-2058.
[5] [5] LI X M, DING Y Ch, SHAO J Y, et al. Fabrication of concave mi-crolens arrays using controllable dielectrophoretic force in template holes [J]. Optics Letters, 2011, 36(20): 4083-4085.
[6] [6] GISSIBL T, THIELE S, HERKOMMER A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photo-nics, 2016, 10(8): 554-556.
[7] [7] ZHANG H R, YANG F Y, DONG J J, et al. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation[J]. Nature Communication, 2016, 7(1): 1-8.
[8] [8] WU D, WU S Zh, NIU L G, et al. High numerical aperture microlens arrays of close packing [J]. Applied Physics Letters, 2010, 97(3) : 031109-031111.
[9] [9] CHEN C F, TZENG S D, CHEN H Y, et al. Silicon microlens structures fabricated by scanning-probe gray-scale oxidation[J]. Optics Letters, 2005, 30(6): 652-654.
[10] [10] ZHANG Ch Ch, LIAO W, YANG K, et al. Fabrication of concave microlens arrays by local fictive temperature modification of fused si-lica [J]. Optics Letters, 2017, 42(6): 1093-1096.
[11] [11] ZHU Zh W, TO S, ZHANG Sh J, et al. Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining [J]. Optics Express, 2015, 23(16): 20593-20604.
[12] [12] LEE H Y, KIM D W, SUNG Y J, et al. Fabrication of SiC micro-lens by plasma etching [J]. Thin Solid Films, 2005, 475(1/2): 318-322.
[13] [13] LIM C S, HONG M H, LIN Y, et al. Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning[J]. Applied Physics Letters, 2006, 89(19): 191125.
[14] [14] LIM C S, HONG M H, KUMAR A S, et al. Fabrication of concave micro lens array using laser patterning and isotropic etching [J]. International Journal of Machine Tools & Manufacture, 2006, 46(5): 552-558.
[15] [15] SALTER P S, BOOTH M J. Adaptive optics in laser processing [J]. Light: Science & Applications, 2019, 8(1): 1-16.
[16] [16] BI Y G, FENG J, LI Y F, et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity [J]. Advanced Materials, 2013, 25(48) : 6969-6974.
[17] [17] WEI D Zh, WANG Ch W, XU X Y, et al. Efficient nonlinear beam shaping in threedimensional lithium niobate nonlinear photonic crystals [J]. Nature Communication, 2019, 10(1): 1-7.
[18] [18] GU J, YE X, FAN Zh M, et al. Progress in fabrication of biomime-tic superhydrophobic surfaces by laser etching[J]. Laser Technology, 2019, 43(4): 493-499 (in Chinese).
[19] [19] YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process [J]. Nature Comminications, 2016, 7(1): 1-7.
[20] [20] WU D, CHEN Q D, NIU L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices [J]. Lab on a Chip, 2009, 9(16): 2391-2394.
[21] [21] LI Zh Z, WANG L, FAN H, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment [J]. Light: Science & Applications, 2020, 9(1): 1-7.
[22] [22] XU B B, ZHANG Y L, XIA H, et al. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing [J]. Lab on a Chip, 2013, 13(9): 1677-1690.
[23] [23] ZOU T T, ZHAO B, XIN W, et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse [J]. Light: Science & Applications, 2020, 9(1): 1-11.
[24] [24] XIE X Zh, ZHOU C X, GAO X Y, et al. Study on working solution of laser-induced backside wet etching[J]. Laser Technology, 2020, 44(1): 7-13(in Chinese).
[25] [25] ZHANG Y L, CHEN Q D, XIA H, et al. Designable 3-D nanofabrication by femtosecond laser direct writing [J]. Nano Today, 2010, 5(5): 435-448.
[26] [26] XIA H, WANG J, TIAN Y, et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization [J]. Advanced Materials, 2010, 22(29): 3204-3207.
[27] [27] XU B B, ZHANG Y L, XIA H, et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating [J]. Small, 2010, 6(16): 1762-1766.
[28] [28] JUODKAZIS S, NISHIMURA K, MISAWA H, et al. Control over the crystalline state of sapphire[J]. Advanced Materials, 2006, 18(11): 1361-1364.
[29] [29] YANG D C, LIANG H W, QIU Y, et al. Evolution of the crystallographic planes of cone-shaped patterned sapphire substrate treated by wet etching[J]. Applied Surface Science, 2014, 295(3): 26-30.
[30] [30] MARUSKA H P, TIETJEN J J. Preparation and properties of vapor-deposited single-crystalline gan[J]. Applied Physics Letters, 1969, 15(10): 327-330.
[31] [31] ROY R, AGRAWAL D K, McKINSTRY H A. Very low thermal-expansion coefficient materials[J]. Annual Review of Materials Science, 1989,19(5): 59-81.
Get Citation
Copy Citation Text
LI Qiankun, LIU Xueqing, CHENG Rong. Fabrication of glass microlens arrays by laser-based technology[J]. Laser Technology, 2021, 45(2): 131
Category:
Received: Jun. 8, 2020
Accepted: --
Published Online: Apr. 15, 2021
The Author Email: CHENG Rong (chengr@tinghua.edu.cn)