Chinese Journal of Lasers, Volume. 47, Issue 7, 701009(2020)
Research Progress on Terahertz Quantum Cascade Lasers
[1] Cao J C[M]. Semiconductor terahertz source detector and application, 1(2012).
[4] Kumar S. Recent progress in terahertz quantum cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 38-47(2011).
[6] Köhler R, Tredicucci A, Beltram F et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 417, 156-159(2002).
[7] Williams B S. Terahertz quantum-cascade lasers[J]. Nature Photonics, 1, 517-525(2007).
[8] Zeng Y Q, Qiang B, Wang Q J. Photonic engineering technology for the development of terahertz quantum cascade lasers[J]. Advanced Optical Materials, 8, 1900573(2020).
[9] Williams B S, Kumar S, Hu Q et al. High-power terahertz quantum-cascade lasers[J]. Electronics Letters, 42, 89-91(2006).
[12] Deutsch C, Kainz M A, Krall M et al. High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers[J]. ACS Photonics, 4, 957-962(2017).
[13] Deutsch C, Krall M, Brandstetter M et al. High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K[J]. Applied Physics Letters, 101, 211117(2012).
[14] Hirayama H, Terashima W. Recent progress of THz-quantum cascade lasers using nitride-based materials[J]. Proceedings of SPIE, 9585, 958504(2015).
[15] Walther C, Fischer M, Scalari G et al. Quantum cascade lasers operating from 1.2 to 1.6 THz[J]. Applied Physics Letters, 91, 131122(2007).
[16] Chan C W I, Hu Q, Reno J L. Ground state terahertz quantum cascade lasers[J]. Applied Physics Letters, 101, 151108(2012).
[17] Rösch M, Scalari G, Beck M et al. Octave-spanning semiconductor laser[J]. Nature Photonics, 9, 42-47(2015).
[18] Kumar S, Hu Q, Reno J L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design[J]. Applied Physics Letters, 94, 131105(2009).
[19] Kumar S. Chan C W I, Hu Q, et al. A 1.8-THz quantum cascade laser operating significantly above the temperature of h-ω/kB[J]. Nature Physics, 7, 166-171(2011).
[20] Bosco L, Franckié M, Scalari G et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K[J]. Applied Physics Letters, 115, 010601(2019).
[21] Brandstetter M, Deutsch C, Krall M et al. High power terahertz quantum cascade lasers with symmetric wafer bonded active regions[J]. Applied Physics Letters, 103, 171113(2013).
[22] Li L H, Chen L, Freeman J R et al. Multi-Watt high-power THz frequency quantum cascade lasers[J]. Electronics Letters, 53, 799-800(2017).
[23] Wang X M, Shen C L, Jiang T et al. High-power terahertz quantum cascade lasers with ~0.23 W in continuous wave mode[J]. AIP Advances, 6, 075210(2016).
[24] Wan W J, Li H, Cao J C. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation[J]. Optics Express, 26, 980-989(2018).
[25] Kumar S, Williams B S, Qin Q et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides[J]. Optics Express, 15, 113-128(2007).
[26] Xu G Y, Colombelli R, Khanna S P et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures[J]. Nature Communications, 3, 952(2012).
[27] Xu G Y, Li L H, Isac N et al. Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range[J]. Applied Physics Letters, 104, 091112(2014).
[28] Jin Y, Gao L, Chen J et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings[J]. Nature Communications, 9, 1407(2018).
[29] Amanti M I, Fischer M, Scalari G et al. Low-divergence single-mode terahertz quantum cascade laser[J]. Nature Photonics, 3, 586-590(2009).
[30] Wu C Z, Khanal S, Reno J L et al. Terahertz plasmonic laser radiating in an ultra-narrow beam[J]. Optica, 3, 734-740(2016).
[31] Biasco S, Garrasi K, Castellano F et al. Continuous-wave highly-efficient low-divergence terahertz wire lasers[J]. Nature Communications, 9, 1122(2018).
[32] Mujagic E, Deutsch C, Detz H et al. Vertically emitting terahertz quantum cascade ring lasers[J]. Applied Physics Letters, 95, 011120(2009).
[34] Chassagneux Y, Colombelli R, Maineult W et al. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions[J]. Nature, 457, 174-178(2009).
[35] Sevin G, Fowler D, Xu G Y et al. Optimized surface-emitting photonic-crystal terahertz quantum cascade lasers with reduced resonator dimensions[J]. Applied Physics Letters, 97, 131101(2010).
[36] Vitiello M S, Nobile M, Ronzani A et al. Photonic quasi-crystal terahertz lasers[J]. Nature Communications, 5, 5884(2014).
[37] Biasco S, Beere H E, Ritchie D et al. Frequency-tunable continuous-wave random lasers at terahertz frequencies[J]. Light-Science & Applications, 8, 43(2019).
[38] Xu L Y, Curwen C A. Hon P W C, et al. Metasurface external cavity laser[J]. Applied Physics Letters, 107, 221105(2015).
[39] Curwen C A, Reno J L, Williams B S. Terahertz quantum cascade VECSEL with watt-level output power[J]. Applied Physics Letters, 113, 011104(2018).
[40] Xu L Y, Chen D G, Curwen C A et al. Metasurface quantum-cascade laser with electrically switchable polarization[J]. Optica, 4, 468-475(2017).
[41] Curwen C A, Reno J L, Williams B S. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL[J]. Nature Photonics, 13, 855-859(2019).
[42] Wan W J, Li H, Zhou T et al. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation[J]. Scientific Reports, 7, 44109(2017).
[43] Zhou K M, Li H, Wan W J et al. Ridge width effect on comb operation in terahertz quantum cascade lasers[J]. Applied Physics Letters, 114, 191106(2019).
[44] Li H, Yan M, Wan W J et al. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation[J]. Advanced Science, 6, 1900460(2019).
[45] Li Z P, Wan W J, Zhou K et al. On-chip dual-comb source based on terahertz quantum cascade lasers under microwave double injection[J]. Physical Review Applied, 12, 044068(2019).
[46] Li H, Li Z P, Wan W J et al. Toward compact and real-time terahertz dual-comb spectroscopy employing a self-detection scheme[J]. ACS Photonics, 7, 49-56(2020).
Get Citation
Copy Citation Text
Wan Wenjian, Li Hua, Cao Juncheng. Research Progress on Terahertz Quantum Cascade Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701009
Special Issue:
Received: Feb. 14, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: