Acta Optica Sinica, Volume. 40, Issue 9, 0910001(2020)

Retinal Blood Vessel Segmentation Based on Fuzzy C-Means Clustering According to the Local Line Structural Constraints

Hong Jia, Chujun Zheng*, Canbiao Li, Wenbin Wang, and Yanbing Xu
Author Affiliations
  • School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006, China
  • show less
    References(23)

    [1] Srinidhi C L, Aparna P, Rajan J. Recent advancements in retinal vessel segmentation[J]. Journal of Medical Systems, 41, 70(2017).

    [2] Soares J V B, Leandro J J G, Cesar R M et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 25, 1214-1222(2006).

    [3] Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification[J]. IEEE Transactions on Medical Imaging, 26, 1357-1365(2007).

    [4] Lupascu C A, Tegolo D, Trucco E. FABC: retinal vessel segmentation using AdaBoost[J]. IEEE Transactions on Information Technology in Biomedicine, 14, 1267-1274(2010).

    [7] Chaudhuri S, Chatterjee S, Katz N et al. Detection of blood vessels in retinal images using two-dimensional matched filters[J]. IEEE Transactions on Medical Imaging, 8, 263-269(1989).

    [8] Sofka M, Stewart C V. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures[J]. IEEE Transactions on Medical Imaging, 25, 1531-1546(2006).

    [9] Zana F, Klein J C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation[J]. IEEE Transactions on Image Processing, 10, 1010-1019(2001).

    [11] Saffarzadeh V, Osareh A, Shadgar B. Vessel segmentation in retinal images using multi-scale line operator and K-means clustering[J]. Journal of Medical Signals & Sensors, 4, 122-129(2014).

    [12] Ali A[M]. Wan Zaki W M D, Hussain A. Blood vessel segmentation from color retinal images using K-means clustering and 2D Gabor wavelet, 428, 221-227(2017).

    [14] Khan Z F. NaliniPriya G. Automatic segmentation of retinal blood vessels employing textural fuzzy C-means clustering. [C]∥2016 International Conference on Emerging Technological Trends (ICETT), October 21-22, 2016. Kollam, India. IEEE, 787367(2016).

    [16] Ahmed M N, Yamany S M, Mohamed N et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 21, 193-199(2002).

    [17] Azzopardi G, Strisciuglio N, Vento M et al. Trainable COSFIRE filters for vessel delineation with application to retinal images[J]. Medical Image Analysis, 19, 46-57(2015).

    [18] Nguyen U T V, Bhuiyan A, Park L A F et al. An effective retinal blood vessel segmentation method using multi-scale line detection[J]. Pattern Recognition, 46, 703-715(2013).

    [19] Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. Boston, MA: Springer US(1981).

    [20] Staal J, Abramoff M D, Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).

    [22] Cai Z Z, Tang P, Hu J B et al. Retinal vessel segmentation based on PST and multi-scale Gaussian filter[J]. Application Research of Computers, 36, 1893-1896(2019).

    [23] Wang W H, Zhang J Z, Wu W Y. New approach to segment retinal vessel using morphology and Otsu[J]. Application Research of Computers, 36, 2228-2231(2019).

    Tools

    Get Citation

    Copy Citation Text

    Hong Jia, Chujun Zheng, Canbiao Li, Wenbin Wang, Yanbing Xu. Retinal Blood Vessel Segmentation Based on Fuzzy C-Means Clustering According to the Local Line Structural Constraints[J]. Acta Optica Sinica, 2020, 40(9): 0910001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 29, 2019

    Accepted: Jan. 19, 2020

    Published Online: May. 6, 2020

    The Author Email: Chujun Zheng (cjzheng@scnu.edu.cn)

    DOI:10.3788/AOS202040.0910001

    Topics