Photonics Research, Volume. 11, Issue 6, 1125(2023)

Sophisticated deep learning with on-chip optical diffractive tensor processing

Yuyao Huang, Tingzhao Fu, Honghao Huang, Sigang Yang, and Hongwei Chen*
Author Affiliations
  • Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    References(112)

    [1] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324(1998).

    [6] D. A. Forsyth, J. Ponce. Computer Vision: A Modern Approach(2002).

    [8] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, S. Thrun. Towards fully autonomous driving: systems and algorithms. IEEE Intelligent Vehicles Symposium (IV), 163-168(2011).

    [9] S. Grigorescu, B. Trasnea, T. Cocias, G. Macesanu. A survey of deep learning techniques for autonomous driving. J. Field Robot., 37, 362-386(2020).

    [12] K. Chowdhary. Natural language processing. Fundamentals of Artificial Intelligence, 603-649(2020).

    [16] J. L. Hennessy, D. A. Patterson. Computer Architecture: A Quantitative Approach(2011).

    [17] D. Kirk. NVIDIA CUDA software and GPU parallel computing architecture. 6th International Symposium on Memory Management, 103-104(2007).

    [18] N. P. Jouppi. In-datacenter performance analysis of a tensor processing unit. Proceedings of the 44th Annual International Symposium on Computer Architecture, 1-12(2017).

    [19] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong. Optimizing FPGA-based accelerator design for deep convolutional neural networks. Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 161-170(2015).

    [46] X. Zhao, H. Lv, C. Chen, S. Tang, X. Liu, Q. Qi. On-chip reconfigurable optical neural networks(2021).

    [50] A. Hirose. Complex-Valued Neural Networks: Theories and Applications, 5(2003).

    [53] X. Ding, X. Zhang, J. Han, G. Ding. Diverse branch block: building a convolution as an inception-like unit. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10886-10895(2021).

    [54] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, J. Sun. Repvgg: making vgg-style convnets great again. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13733-13742(2021).

    [55] X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, G. Ding. Resrep: lossless CNN pruning via decoupling remembering and forgetting. Proceedings of the IEEE/CVF International Conference on Computer Vision, 4510-4520(2021).

    [63] M. Sakib, P. Liao, C. Ma, R. Kumar, D. Huang, G.-L. Su, X. Wu, S. Fathololoumi, H. Rong. A high-speed micro-ring modulator for next generation energy-efficient optical networks beyond 100 Gbaud. CLEO: Science and Innovations, SF1C–3(2021).

    [68] H. Liao, J. Tu, J. Xia, X. Zhou. Davinci: a scalable architecture for neural network computing. Hot Chips Symposium, 1-44(2019).

    [71] Y. Li, J. Dongarra, S. Tomov. A note on auto-tuning GEMM for GPUs. Computational Science–ICCS 2009: 9th International Conference, 884-892(2009).

    [73] D. Yan, W. Wang, X. Chu. Demystifying tensor cores to optimize half-precision matrix multiply. IEEE International Parallel and Distributed Processing Symposium (IPDPS), 634-643(2020).

    [80] Y. LeCun. 1.1 deep learning hardware: past, present, and future. IEEE International Solid-State Circuits Conference (ISSCC), 12-19(2019).

    [81] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).

    [82] K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv(2014).

    [104] K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, M. C. Wu. 128 × 128 silicon photonic MEMS switch with scalable row/column addressing. CLEO: Science and Innovations, SF1A–4(2018).

    [110] S. Malyshev, A. Chizh. State of the art high-speed photodetectors for microwave photonics application. 15th International Conference on Microwaves, Radar and Wireless Communications, 765-775(2004).

    Tools

    Get Citation

    Copy Citation Text

    Yuyao Huang, Tingzhao Fu, Honghao Huang, Sigang Yang, Hongwei Chen, "Sophisticated deep learning with on-chip optical diffractive tensor processing," Photonics Res. 11, 1125 (2023)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Jan. 3, 2023

    Accepted: Apr. 17, 2023

    Published Online: Jun. 2, 2023

    The Author Email: Hongwei Chen (chenhw@tsinghua.edu.cn)

    DOI:10.1364/PRJ.484662

    Topics