Chinese Journal of Lasers, Volume. 51, Issue 3, 0307110(2024)
Multi‑Parameter Imaging Analysis of Pig Skin Burns Based on Fiber Polarization‑Sensitive Optical Coherence Tomography
[1] Jin Y, Ye P P, Deng X et al. Burn-related burden among Chinese population from 1990 to 2013[J]. Chinese Journal of Epidemiology, 38, 767-771(2017).
[2] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[3] Youngquist R C, Carr S, Davies D E. Optical coherence-domain reflectometry: a new optical evaluation technique[J]. Optics Letters, 12, 158-160(1987).
[4] Lin P W, Chang H W, Lin J P et al. Analysis of peripapillary retinal nerve fiber layer and inner macular layers by spectral-domain optical coherence tomography for detection of early glaucoma[J]. International Journal of Ophthalmology, 11, 1163-1172(2018).
[5] Ang B C, Lim S Y, Dorairaj S. Intra-operative optical coherence tomography in glaucoma surgery—a systematic review[J]. Eye, 34, 168-177(2019).
[6] Ali Z A, Karimi Galougahi K, Mintz G S et al. Intracoronary optical coherence tomography: state of the art and future directions[J]. EuroIntervention, 17, e105-e123(2021).
[7] Wei Y Z, Yuan X, Lan G P et al. Research progress and application of cardiovascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 58, 2400002(2021).
[8] Krause F, Köhler C, Rüger C et al. Visualization of the pulp chamber roof and residual dentin thickness by spectral-domain optical coherence tomography in vitro[J]. Lasers in Medical Science, 34, 973-980(2019).
[9] Rajabi-Estarabadi A, Bittar J M, Zheng C W et al. Optical coherence tomography imaging of melanoma skin cancer[J]. Lasers in Medical Science, 34, 411-420(2019).
[10] Jerjes W, Hamdoon Z, Hopper C. Structural validation of facial skin using optical coherence tomography: a descriptive study[J]. Skin Research and Technology, 26, 153-162(2019).
[11] Singla N, Srivastava V, Mehta D S. In vivo classification of human skin burns using machine learning and quantitative features captured by optical coherence tomography[J]. Laser Physics Letters, 15, 025601(2018).
[12] Rangaraju L P, Kunapuli G, Every D et al. Classification of burn injury using Raman spectroscopy and optical coherence tomography: an ex-vivo study on porcine skin[J]. Burns, 45, 659-670(2019).
[13] Lu J, Deegan A J, Cheng Y X et al. Application of OCT-derived attenuation coefficient in acute burn-damaged skin[J]. Lasers in Surgery and Medicine, 53, 1192-1200(2021).
[14] de Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography-a review[J]. Biomedical Optics Express, 8, 1838-1873(2017).
[15] Ramella-Roman J C, Saytashev I, Piccini M. A review of polarization-based imaging technologies for clinical and preclinical applications[J]. Journal of Optics, 22, 123001(2020).
[16] Park K S, Choi W J, Song S Z et al. Multifunctional in vivo imaging for monitoring wound healing using swept-source polarization-sensitive optical coherence tomography[J]. Lasers in Surgery and Medicine, 50, 213-221(2018).
[17] Wu T, Zhou X K, Liu Y W et al. Local polarization properties extraction based on spectral domain polarization sensitive optical coherence tomography and quantitative burn depth measurement of biological tissues[J]. Chinese Journal of Lasers, 49, 2407203(2022).
[18] Kravez E, Villiger M, Bouma B et al. Prediction of scar size in rats six months after burns based on early post-injury polarization-sensitive optical frequency domain imaging[J]. Frontiers in Physiology, 8, 967(2017).
[19] Jaspers M E H, Feroldi F, Vlig M et al. In vivo polarization-sensitive optical coherence tomography of human burn scars: birefringence quantification and correspondence with histologically determined collagen density[J]. Journal of Biomedical Optics, 22, 121712(2017).
[20] Dubey K, Srivastava V, Dalal K. In vivo automated quantification of thermally damaged human tissue using polarization sensitive optical coherence tomography[J]. Computerized Medical Imaging and Graphics, 64, 22-28(2018).
[21] Cannon T M, Uribe-Patarroyo N, Villiger M et al. Measuring collagen injury depth for burn severity determination using polarization sensitive optical coherence tomography[J]. Scientific Reports, 12, 10479(2022).
[22] Liu H, Gao W R, Wu X P et al. All single-mode fiber-based polarization-sensitive spectral domain optical coherence tomography system[J]. Journal of Physics Communications, 3, 015014(2019).
[23] Lippok N, Villiger M, Jun C S et al. Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing[J]. Optics Letters, 40, 2025-2028(2015).
[24] Trasischker W, Zotter S, Torzicky T et al. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer[J]. Biomedical Optics Express, 5, 2798-2809(2014).
[25] Hu M Y, Yang D, Yang Z H et al. Polarization-sensitive optical coherence tomography for oral squamous cell carcinoma tissue imaging[J]. Acta Optica Sinica, 42, 1017002(2022).
[26] Jiao S L, Yao G, Wang L V. Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography[J]. Applied Optics, 39, 6318-6324(2000).
[27] Tang P J, Xu J J, Wang R K. Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography[J]. Applied Physics Letters, 113, 231101(2018).
[28] Götzinger E, Pircher M, Geitzenauer W et al. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography[J]. Optics Express, 16, 16410-16422(2008).
[29] Everett M J, Schoenenberger K, Colston B W et al. Birefringence characterization of biological tissue by use of optical coherence tomography[J]. Optics Letters, 23, 228-230(1998).
[31] Makita S, Yamanari M, Yasuno Y. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging[J]. Optics Express, 18, 854-876(2010).
[32] Cuttle L, Kempf M, Phillips G E et al. A porcine deep dermal partial thickness burn model with hypertrophic scarring[J]. Burns, 32, 806-820(2006).
Get Citation
Copy Citation Text
jingjiang Xu, Yixing Zhang, Gongpu Lan, Ronghua Yang, Jia Qin, Lin An, Haishu Tan, Shangjie Ren, Haixia Qiu, Shiyong Zhao, Haibo Jia, Bo Yu. Multi‑Parameter Imaging Analysis of Pig Skin Burns Based on Fiber Polarization‑Sensitive Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2024, 51(3): 0307110
Category: Biomedical Optical Imaging
Received: Jul. 27, 2023
Accepted: Oct. 24, 2023
Published Online: Jan. 22, 2024
The Author Email: Xu jingjiang (xujingjiang25@qq.com)
CSTR:32183.14.CJL231061