Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 7, 697(2020)

Review on laser properties of cholesteric liquid crystals with multiple-emulsion microstructures

LUO Wei-cheng*, CHE Kai-jun, LI Sen-sen, and CHEN Lu-jian
Author Affiliations
  • [in Chinese]
  • show less
    References(94)

    [1] [1] LI C L, SUN J, CAI H X, et al. Optical properties of cholesteric liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2002, 17(3): 193-198. (in Chinese)

              LI C L, SUN J, CAI H X, et al. Optical properties of cholesteric liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2002, 17(3): 193-198. (in Chinese)

    [2] [2] BISOYI H K, BUNNING T J, LI Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures [J]. Advanced Materials, 2018, 30(25): 1706512.

              BISOYI H K, BUNNING T J, LI Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures [J]. Advanced Materials, 2018, 30(25): 1706512.

    [3] [3] FUNAMOTO K, OZAKI M, YOSHINO K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal [J]. Japanese Journal of Applied Physics, 2003, 42(12B): L1523-L1525.

              FUNAMOTO K, OZAKI M, YOSHINO K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal [J]. Japanese Journal of Applied Physics, 2003, 42(12B): L1523-L1525.

    [4] [4] IWAI Y, KAJI H, UCHIDA Y, et al. Temperature-dependent color change of cholesteric liquid crystalline core-shell microspheres [J]. Molecular Crystals and Liquid Crystals, 2015, 615(1): 9-13.

              IWAI Y, KAJI H, UCHIDA Y, et al. Temperature-dependent color change of cholesteric liquid crystalline core-shell microspheres [J]. Molecular Crystals and Liquid Crystals, 2015, 615(1): 9-13.

    [5] [5] JANG J H, PARK S Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics [J]. Sensors and Actuators B: Chemical, 2017, 241: 636-643.

              JANG J H, PARK S Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics [J]. Sensors and Actuators B: Chemical, 2017, 241: 636-643.

    [6] [6] LEE H G, MUNIR S, PARK S Y. Cholesteric liquid crystal droplets for biosensors [J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26407-26417.

              LEE H G, MUNIR S, PARK S Y. Cholesteric liquid crystal droplets for biosensors [J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26407-26417.

    [7] [7] KIM J G, PARK S Y. Photonic spring-like shell templated from cholesteric liquid crystal prepared by microfluidics [J]. Advanced Optical Materials, 2017, 5(13): 1700243.

              KIM J G, PARK S Y. Photonic spring-like shell templated from cholesteric liquid crystal prepared by microfluidics [J]. Advanced Optical Materials, 2017, 5(13): 1700243.

    [8] [8] NOH K G, PARK S Y. Smart molecular-spring photonic droplets [J]. Materials Horizons, 2017, 4(4): 633-640.

              NOH K G, PARK S Y. Smart molecular-spring photonic droplets [J]. Materials Horizons, 2017, 4(4): 633-640.

    [9] [9] SEO H J, LEE S S, NOH J, et al. Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials [J]. Journal of Materials Chemistry C, 2017, 5(30): 7567-7573.

              SEO H J, LEE S S, NOH J, et al. Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials [J]. Journal of Materials Chemistry C, 2017, 5(30): 7567-7573.

    [10] [10] MYUNG D B, PARK S Y. Optical properties and applications of photonic shells [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20350-20359.

              MYUNG D B, PARK S Y. Optical properties and applications of photonic shells [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20350-20359.

    [11] [11] NOH J, LIANG H L, DREVENSEK-OLENIK I, et al. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets [J]. Journal of Materials Chemistry C, 2014, 2(5): 806-810.

              NOH J, LIANG H L, DREVENSEK-OLENIK I, et al. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets [J]. Journal of Materials Chemistry C, 2014, 2(5): 806-810.

    [12] [12] LEE S S, KIM B, KIM S K, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules [J]. Advanced Materials, 2015, 27(4): 627-633.

              LEE S S, KIM B, KIM S K, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules [J]. Advanced Materials, 2015, 27(4): 627-633.

    [13] [13] LEE S S, KIM S K, WON J C, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment [J]. Angewandte Chemie International Edition, 2015, 54(50): 15266-15270.

              LEE S S, KIM S K, WON J C, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment [J]. Angewandte Chemie International Edition, 2015, 54(50): 15266-15270.

    [14] [14] LEE S S, SEO H J, KIM Y H, et al. Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals [J]. Advanced Materials, 2017, 29(23): 1606894.

              LEE S S, SEO H J, KIM Y H, et al. Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals [J]. Advanced Materials, 2017, 29(23): 1606894.

    [15] [15] IWAI Y, KAJI H, UCHIDA Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core-shell microcapsules [J]. Journal of Materials Chemistry C, 2014, 2(25): 4904-4908.

              IWAI Y, KAJI H, UCHIDA Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core-shell microcapsules [J]. Journal of Materials Chemistry C, 2014, 2(25): 4904-4908.

    [16] [16] KAND J H, KIM S H, FERNANDEZ-NIEVES A, et al. Amplified photon upconversion by photonic shell of cholesteric liquid crystals [J]. Journal of the American Chemical Society, 2017, 139(16): 5708-5711.

              KAND J H, KIM S H, FERNANDEZ-NIEVES A, et al. Amplified photon upconversion by photonic shell of cholesteric liquid crystals [J]. Journal of the American Chemical Society, 2017, 139(16): 5708-5711.

    [17] [17] KOPP V I, FAN B, VITHANA H K M, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Optics Letters, 1998, 23(21): 1707-1709.

              KOPP V I, FAN B, VITHANA H K M, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Optics Letters, 1998, 23(21): 1707-1709.

    [18] [18] TAHERI B, MUNOZ A F, PALFFY-MUHORAY P, et al. Low threshold lasing in cholesteric liquid crystals [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 2006, 358(1): 73-82.

              TAHERI B, MUNOZ A F, PALFFY-MUHORAY P, et al. Low threshold lasing in cholesteric liquid crystals [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 2006, 358(1): 73-82.

    [19] [19] FAN Y Q, WANG H L, GAO K X, et al. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1863-1871. (in Chinese)

              FAN Y Q, WANG H L, GAO K X, et al. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1863-1871. (in Chinese)

    [20] [20] HAN X W, ZHANG H W, LUO H Y, et al. Preparation of poly (vinyl alcohol) microspheres based on droplet microfluidic technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1269-1274. (in Chinese)

              HAN X W, ZHANG H W, LUO H Y, et al. Preparation of poly (vinyl alcohol) microspheres based on droplet microfluidic technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1269-1274. (in Chinese)

    [21] [21] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device [J]. Science, 2005, 308(5721): 537-541.

              UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device [J]. Science, 2005, 308(5721): 537-541.

    [22] [22] LIN Y L, YANG Y J, SHAN Y W, et al. Magnetic nanoparticle-assisted tunable optical patterns from spherical cholesteric liquid crystal bragg reflectors [J]. Nanomaterials (Basel), 2017, 7(11): 376.

              LIN Y L, YANG Y J, SHAN Y W, et al. Magnetic nanoparticle-assisted tunable optical patterns from spherical cholesteric liquid crystal bragg reflectors [J]. Nanomaterials (Basel), 2017, 7(11): 376.

    [23] [23] CHE K J, YANG Y J, LIN Y L, et al. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing [J]. Lab on a Chip, 2019, 19(18): 3116-3122.

              CHE K J, YANG Y J, LIN Y L, et al. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing [J]. Lab on a Chip, 2019, 19(18): 3116-3122.

    [24] [24] UCHIDA Y, IWAI Y, AKITA T, et al. Size control of cholesteric liquid crystalline microcapsules [J]. Molecular Crystals and Liquid Crystals, 2015, 613(1): 82-87.

              UCHIDA Y, IWAI Y, AKITA T, et al. Size control of cholesteric liquid crystalline microcapsules [J]. Molecular Crystals and Liquid Crystals, 2015, 613(1): 82-87.

    [25] [25] BELLOUL M, BARTOLO J F, ZIRAOUI B, et al. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device [J]. Applied Physics Letters, 2013, 103(3): 033112.

              BELLOUL M, BARTOLO J F, ZIRAOUI B, et al. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device [J]. Applied Physics Letters, 2013, 103(3): 033112.

    [26] [26] AKITA T, KOUNO H, IWAI Y, et al. Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points [J]. Journal of Materials Chemistry C, 2017, 5(6): 1303-1307.

              AKITA T, KOUNO H, IWAI Y, et al. Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points [J]. Journal of Materials Chemistry C, 2017, 5(6): 1303-1307.

    [27] [27] LOPEZ-LEON T, KONING V, DEVAIAH K B S, et al. Frustrated nematic order in spherical geometries [J]. Nature Physics, 2011, 7(5): 391-394.

              LOPEZ-LEON T, KONING V, DEVAIAH K B S, et al. Frustrated nematic order in spherical geometries [J]. Nature Physics, 2011, 7(5): 391-394.

    [28] [28] IWAI Y, IIJIMA R, YAMAMOTO K, et al. Shrinkage of cholesteric liquid crystalline microcapsule as omnidirectional cavity to suppress optical loss [J]. Advanced Optical Materials, 2020, 8(6): 1901363.

              IWAI Y, IIJIMA R, YAMAMOTO K, et al. Shrinkage of cholesteric liquid crystalline microcapsule as omnidirectional cavity to suppress optical loss [J]. Advanced Optical Materials, 2020, 8(6): 1901363.

    [29] [29] HUMAR M, MUEVI I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets [J]. Optics Express, 2010, 18(26): 26995-27003.

              HUMAR M, MUEVI I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets [J]. Optics Express, 2010, 18(26): 26995-27003.

    [30] [30] PIRNAT G, HUMAR M, MUEVI I. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers [J]. Optics Express, 2018, 26(18): 22615-22625.

              PIRNAT G, HUMAR M, MUEVI I. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers [J]. Optics Express, 2018, 26(18): 22615-22625.

    [31] [31] LIN J D, HSIEH M H, WEI G J, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant [J]. Optics Express, 2013, 21(13): 15765-15776.

              LIN J D, HSIEH M H, WEI G J, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant [J]. Optics Express, 2013, 21(13): 15765-15776.

    [32] [32] ZHENG Z G, LIU B W, ZHOU L, et al. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion [J]. Journal of Materials Chemistry C, 2015, 3(11): 2462-2470.

              ZHENG Z G, LIU B W, ZHOU L, et al. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion [J]. Journal of Materials Chemistry C, 2015, 3(11): 2462-2470.

    [33] [33] HUMAR M, MUEVI I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets [J]. Optics Express, 2011, 19(21): 19836-19844.

              HUMAR M, MUEVI I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets [J]. Optics Express, 2011, 19(21): 19836-19844.

    [34] [34] JAMPANI V S R, HUMAR M, MUEVI I. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity [J]. Optics Express, 2013, 21(18): 20506-20516.

              JAMPANI V S R, HUMAR M, MUEVI I. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity [J]. Optics Express, 2013, 21(18): 20506-20516.

    [35] [35] WANG Y, LI H Y, ZHAO L Y, et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application [J]. Optics Express, 2017, 25(2): 918-926.

              WANG Y, LI H Y, ZHAO L Y, et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application [J]. Optics Express, 2017, 25(2): 918-926.

    [36] [36] MUR M, SOFI J A, KVAI I, et al. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets [J]. Optics Express, 2017, 25(2): 1073-1083.

              MUR M, SOFI J A, KVAI I, et al. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets [J]. Optics Express, 2017, 25(2): 1073-1083.

    [37] [37] DUAN R, HAO X L, LI Y Z, et al. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode [J]. Sensors and Actuators B: Chemical, 2020, 308: 127672.

              DUAN R, HAO X L, LI Y Z, et al. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode [J]. Sensors and Actuators B: Chemical, 2020, 308: 127672.

    [38] [38] WANG Y, LI H Y, ZHAO L Y, et al. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets [J]. Applied Physics Letters, 2016, 109(23): 231906.

              WANG Y, LI H Y, ZHAO L Y, et al. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets [J]. Applied Physics Letters, 2016, 109(23): 231906.

    [39] [39] ZHAO L Y, WANG Y, YUAN Y G, et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor [J]. Optics Communications, 2017, 402: 181-185.

              ZHAO L Y, WANG Y, YUAN Y G, et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor [J]. Optics Communications, 2017, 402: 181-185.

    [40] [40] ZHANG C, FU D Y, XIA C L, et al. Lasing emission of dye-doped cholesteric liquid crystal microdroplet wrapped by polyglycerol in hollow glass microsphere [J]. Chinese Optics Letters, 2020, 18(1): 011402.

              ZHANG C, FU D Y, XIA C L, et al. Lasing emission of dye-doped cholesteric liquid crystal microdroplet wrapped by polyglycerol in hollow glass microsphere [J]. Chinese Optics Letters, 2020, 18(1): 011402.

    [41] [41] LI Y, LUO D, CHEN R. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol [J]. Applied Optics, 2016, 55(31): 8864-8867.

              LI Y, LUO D, CHEN R. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol [J]. Applied Optics, 2016, 55(31): 8864-8867.

    [42] [42] UCHIDA Y, TAKANISHI Y, YAMAMOTO J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells [J]. Advanced Materials, 2013, 25(23): 3234-3237.

              UCHIDA Y, TAKANISHI Y, YAMAMOTO J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells [J]. Advanced Materials, 2013, 25(23): 3234-3237.

    [43] [43] CHEN L J, LI Y N, FAN J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch [J]. Advanced Optical Materials, 2014, 2(9): 845-848.

              CHEN L J, LI Y N, FAN J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch [J]. Advanced Optical Materials, 2014, 2(9): 845-848.

    [44] [44] CHEN L J, GONG L L, LIN Y L, et al. Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers [J]. Lab on a Chip, 2016, 16(7): 1206-1213.

              CHEN L J, GONG L L, LIN Y L, et al. Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers [J]. Lab on a Chip, 2016, 16(7): 1206-1213.

    [45] [45] LIN Y L, GONG L L, CHE K J, et al. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells [J]. Applied Physics Letters, 2017, 110(22): 223301.

              LIN Y L, GONG L L, CHE K J, et al. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells [J]. Applied Physics Letters, 2017, 110(22): 223301.

    [46] [46] LEE S S, KIM J B, KIM Y H, et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals [J]. Science Advances, 2018, 4(6): eaat8276.

              LEE S S, KIM J B, KIM Y H, et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals [J]. Science Advances, 2018, 4(6): eaat8276.

    [47] [47] PARK S, LEE S S, KIM S H. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops [J]. Advanced Materials, 2020.DOI: 10.1002/adma.202002166.

              PARK S, LEE S S, KIM S H. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops [J]. Advanced Materials, 2020.DOI: 10.1002/adma.202002166.

    Tools

    Get Citation

    Copy Citation Text

    LUO Wei-cheng, CHE Kai-jun, LI Sen-sen, CHEN Lu-jian. Review on laser properties of cholesteric liquid crystals with multiple-emulsion microstructures[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 697

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 6, 2020

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: LUO Wei-cheng (541799565@qq.com)

    DOI:10.37188/yjyxs20203507.069

    Topics