Acta Optica Sinica, Volume. 44, Issue 19, 1925003(2024)
Recent Progress and Prospects in Plasmonic Chemistry (Invited)
[7] Liu Z Z, Liu X X, Sun Y S et al. Research progress on SERS immunochromatographic assay technology based on novel nanomaterials[J]. Acta Optica Sinica, 43, 1712003(2023).
[9] Chen G[M]. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons(2005).
[10] Zhan C, Yi J, Hu S et al. Plasmon-mediated chemical reactions[J]. Nature Reviews Methods Primers, 3, 12(2023).
[12] Baffou G, Rigneault H, Marguet D et al. A critique of methods for temperature imaging in single cells[J]. Nature Methods, 11, 899-901(2014).
[13] Donner J S, Thompson S A, Kreuzer M P et al. Mapping intracellular temperature using green fluorescent protein[J]. Nano Letters, 12, 2107-2111(2012).
[14] Ayala-Orozco C, Urban C, Knight M W et al. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells[J]. ACS Nano, 8, 6372-6381(2014).
[15] Bardhan R, Lal S, Joshi A et al. Theranostic nanoshells: from probe design to imaging and treatment of cancer[J]. Accounts of Chemical Research, 44, 936-946(2011).
[16] Ribera J, Vilches C, Sanz V et al. Treatment of hepatic fibrosis in mice based on targeted plasmonic hyperthermia[J]. ACS Nano, 15, 7547-7562(2021).
[17] Zhong Y L, Peng Y H, Chen J J et al. Optical temperature field-driven tweezers: principles and biomedical applications[J]. Acta Optica Sinica, 43, 1400001(2023).
[18] Hogan N J, Urban A S, Ayala-Orozco C et al. Nanoparticles heat through light localization[J]. Nano Letters, 14, 4640-4645(2014).
[19] Alvarez P J J, Chan C K, Elimelech M et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 13, 634-641(2018).
[24] Xu Q, Yang L L, Liu Z et al. Preparation and study of Ag nanoparticles composite amorphous gallium oxide photodetector[J]. Acta Optica Sinica, 43, 2004003(2023).
[26] Christopher P, Moskovits M. Hot charge carrier transmission from plasmonic nanostructures[J]. Annual Review of Physical Chemistry, 68, 379-398(2017).
[27] Baffou G, Quidant R. Nanoplasmonics for chemistry[J]. Chemical Society Reviews, 43, 3898-3907(2014).
[28] Zhang Y C, He S, Guo W X et al. Surface-plasmon-driven hot electron photochemistry[J]. Chemical Reviews, 118, 2927-2954(2018).
[30] Tsu R. Landau damping and dispersion of phonon, plasmon, and photon waves in polar semiconductors[J]. Physical Review, 164, 380-383(1967).
[31] Li X G, Xiao D, Zhang Z Y. Landau damping of quantum plasmons in metal nanostructures[J]. New Journal of Physics, 15, 023011(2013).
[34] Aslam U, Rao V G, Chavez S et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures[J]. Nature Catalysis, 1, 656-665(2018).
[35] Warrier P, Teja A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles[J]. Nanoscale Research Letters, 6, 247(2011).
[37] Zhan C, Moskovits M, Tian Z Q. Recent progress and prospects in plasmon-mediated chemical reaction[J]. Matter, 3, 42-56(2020).
[38] Boerigter C, Aslam U, Linic S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials[J]. ACS Nano, 10, 6108-6115(2016).
[39] Liu Z W, Hou W B, Pavaskar P et al. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination[J]. Nano Letters, 11, 1111-1116(2011).
[40] Ingram D B, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface[J]. Journal of the American Chemical Society, 133, 5202-5205(2011).
[42] Herran M, Juergensen S, Kessens M et al. Plasmonic bimetallic two-dimensional supercrystals for H2 generation[J]. Nature Catalysis, 6, 1205-1214(2023).
[43] Kazuma E, Jung J, Ueba H et al. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule[J]. Science, 360, 521-526(2018).
[44] Ueno K, Juodkazis S, Shibuya T et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source[J]. Journal of the American Chemical Society, 130, 6928-6929(2008).
[46] Wu K, Chen J, McBride J R et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J]. Science, 349, 632-635(2015).
[47] Boerigter C, Campana R, Morabito M et al. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis[J]. Nature Communications, 7, 10545(2016).
[48] Mubeen S, Lee J, Singh N et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons[J]. Nature Nanotechnology, 8, 247-251(2013).
[49] Xie W, Schlücker S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces[J]. Nature Communications, 6, 7570(2015).
[51] Zhan C, Wang Q X, Yi J et al. Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields[J]. Science Advances, 7, eabf0962(2021).
[52] Huang Y F, Zhang M, Zhao L B et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances[J]. Angewandte Chemie, 53, 2353-2357(2014).
[54] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 94, 153109(2009).
[56] Mao C L, Li H, Gu H G et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light[J]. Chem, 5, 2702-2717(2019).
[57] Lu X M, Rycenga M, Skrabalak S E et al. Chemical synthesis of novel plasmonic nanoparticles[J]. Annual Review of Physical Chemistry, 60, 167-192(2009).
[59] Robatjazi H, Zhao H Q, Swearer D F et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles[J]. Nature Communications, 8, 27(2017).
[60] Aslam U, Chavez S, Linic S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis[J]. Nature Nanotechnology, 12, 1000-1005(2017).
[61] Zhan C, Wang Z Y, Zhang X G et al. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes[J]. Journal of the American Chemical Society, 141, 8053-8057(2019).
[66] Cheruvathoor Poulose A, Zoppellaro G, Konidakis I et al. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst[J]. Nature Nanotechnology, 17, 485-492(2022).
[67] Geng Z J, Yu Y F, Offen A J et al. Achieving maximum overall light enhancement in plasmonic catalysis by combining thermal and non-thermal effects[J]. Nature Catalysis, 6, 1241-1247(2023).
[68] Furube A, Du L C, Hara K et al. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. Journal of the American Chemical Society, 129, 14852-14853(2007).
[69] Zhan C, Liu B W, Huang Y F et al. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures[J]. Nature Communications, 10, 2671(2019).
[71] Frischkorn C, Wolf M. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics[J]. Chemical Reviews, 106, 4207-4233(2006).
[72] Wu K F, Rodríguez-Córdoba W E, Yang Y et al. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures[J]. Nano Letters, 13, 5255-5263(2013).
[73] Brown A M, Sundararaman R, Narang P et al. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry[J]. ACS Nano, 10, 957-966(2016).
[74] Mahapatra S, Schultz J F, Li L F et al. Controlling localized plasmons via an atomistic approach: attainment of site-selective activation inside a single molecule[J]. Journal of the American Chemical Society, 144, 2051-2055(2022).
[75] Zhao J, Xue S, Ji R R et al. Localized surface plasmon resonance for enhanced electrocatalysis[J]. Chemical Society Reviews, 50, 12070-12097(2021).
[76] Liu J, Cai Z Y, Sun W X et al. Plasmonic hot electron-mediated hydrodehalogenation kinetics on nanostructured Ag electrodes[J]. Journal of the American Chemical Society, 142, 17489-17498(2020).
[78] Zhang Y, Yang B, Ghafoor A et al. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy[J]. National Science Review, 6, 1169-1175(2019).
[79] Wang H C, Fu T F, Du Y Q et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 620, 47-60(2023).
[80] Masson J F, Biggins J S, Ringe E. Machine learning for nanoplasmonics[J]. Nature Nanotechnology, 18, 111-123(2023).
Get Citation
Copy Citation Text
Chao Zhan, Jun Yi, Shuyi Zhu, Zhongqun Tian. Recent Progress and Prospects in Plasmonic Chemistry (Invited)[J]. Acta Optica Sinica, 2024, 44(19): 1925003
Category: OPTOELECTRONICS
Received: Jul. 3, 2024
Accepted: Aug. 19, 2024
Published Online: Oct. 9, 2024
The Author Email: Tian Zhongqun (zqtian@xmu.edu.cn)
CSTR:32393.14.AOS241240