Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1637007(2025)

Surface-Defect Detection Algorithm for Aluminum Profiles Based on CDA-YOLOv8

Yawei Zhao, Geng Sun*, Hongjie Wang, and Haonan Hu
Author Affiliations
  • College of Information Engineering, Dalian Ocean University, Dalian 116023, Liaoning , China
  • show less
    Figures & Tables(15)
    YOLOv8 network structure
    CDA-YOLOv8 network structure
    Diagram of CG Block structure
    Diagram of DWR structure
    Diagram of C2f_DWR structure
    Diagram of SSFF structure
    Comparison of mAP@0.5 curves between YOLOv8s and CDA-YOLOv8
    Comparison of detection effects. (a)YOLOv8s;(b)CDA-YOLOv8
    • Table 1. Experimental parameter configuration

      View table

      Table 1. Experimental parameter configuration

      ParameterValue
      Image size640×640
      OptimizerSGD
      Batch_size16
      Epoch300
      Momentum0.937
      Learning rate0.01
      weight decay0.0005
    • Table 2. Results of a comparative experiment on downsampling

      View table

      Table 2. Results of a comparative experiment on downsampling

      ModelParams /106FLOPs /109mAP@0.5 /%
      Conv (Baseline)11.128.583.7
      CG Block10.627.184.8
      SPDConv15.839.883.7
      ADown10.025.784.5
      LDConv10.627.781.6
      WaveletPool9.925.784.1
    • Table 3. Comparison experiment results of C2f module

      View table

      Table 3. Comparison experiment results of C2f module

      ModelParams /106FLOPs /109mAP@0.5 /%
      C2f (baseline)11.128.583.7
      C2f_DWR10.627.185.1
      C2f_DySnakeConv14.433.883.9
      C2f_RFCAConv11.229.384.9
      C2f_MLCA11.128.584.3
      C2f_PPA14.334.984.2
    • Table 4. Comparison experiment results of small object detection layer

      View table

      Table 4. Comparison experiment results of small object detection layer

      ModelP2ASFP2Params /106FLOPs /109mAP@0.5 /%
      CG Block+C2f_DWR11.329.086.0
      CG Block+C2f_DWR10.836.986.0
      CG Block+C2f_DWR9.234.688.1
    • Table 5. Ablation experiments

      View table

      Table 5. Ablation experiments

      ModelCGBlockC2f_DWRASFP2Params /106FLOPs /109P /%R /%mAP@0.5 /%
      111.128.588.378.083.7
      211.830.387.380.184.8
      310.627.188.880.685.1
      48.934.186.880.785.3
      511.329.087.783.086.0
      69.635.986.383.086.6
      78.532.891.078.985.6
      89.234.693.480.488.1
    • Table 6. Comparison of detection results of each defect category

      View table

      Table 6. Comparison of detection results of each defect category

      ClassAP /%
      YOLOv8sCDA-YOLOv8
      Non-conductive93.896.9
      Stains41.547.2
      Corner leakage98.498.5
      Spray flow88.892.4
      Paint bubbles56.271.7
      crutches69.181.5
      Mixed colors99.599.5
      Orange peel97.798.6
      Leakage98.098.4
      Pitting93.596.7
    • Table 7. Comparison experimental results

      View table

      Table 7. Comparison experimental results

      ModelP /%R /%mAP@0.5 /%
      Faster R-CNN77.872.575.8
      YOLOv5s85.579.882.3
      YOLOv8s88.378.083.7
      YOLO9s87.878.284.9
      YOLOv10s83.976.882.8
      CDA-YOLOv893.480.488.1
    Tools

    Get Citation

    Copy Citation Text

    Yawei Zhao, Geng Sun, Hongjie Wang, Haonan Hu. Surface-Defect Detection Algorithm for Aluminum Profiles Based on CDA-YOLOv8[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1637007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Feb. 19, 2025

    Accepted: Mar. 26, 2025

    Published Online: Aug. 6, 2025

    The Author Email: Geng Sun (sungeng@dlou.edu.cn)

    DOI:10.3788/LOP250671

    CSTR:32186.14.LOP250671

    Topics