Acta Photonica Sinica, Volume. 51, Issue 10, 1006002(2022)
Progress in Research of Optical Fiber High Temperature and Strain Sensor(Invited)
[1] LI H N, LI D S, SONG G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Steel Construction, 26, 1647-1657(2004).
[2] TENNYSON R C, MUFTI A A, RIZKALLA S et al. Structural health monitoring of innovative bridges in Canada with fiber optic sensors[J]. Smart Materials and Structures, 10, 560-573(2001).
[3] NAEEM K, CHUNG Y, KIM B. Cascaded two-core PCFs-based in-line fiber interferometer for simultaneous measurement of strain and temperature[J]. IEEE Sensors Journal, 19, 3322-3327(2019).
[4] WANG Y X, BAO H H, RANG Z et al. Integrated FP/RFBG sensor with a micro-channel for dual-parameter measurement under high temperature[J]. Applied Optics, 56, 4250-4254(2017).
[5] PAN Y, LIU T, JIANG J et al. Simultaneous measurement of temperature and strain using spheroidal-cavity-overlapped FBG[J]. IEEE Photonics Journal, 7, 1-6(2015).
[6] JIANG Y, YANG D, YUAN Y et al. Strain and high-temperature discrimination using a Type Ⅱ fiber Bragg grating and a miniature fiber Fabry–Perot interferometer[J]. Applied Optics, 55, 6341-6345(2016).
[7] KONRAD M, KAZIMIERZ J D, MICHA M et al. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement[J]. Optics Letters, 42, 1464-1467(2017).
[8] SONG M, SANG B L, SANG S C et al. Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube[J]. Optical Fiber Technology, 3, 194-196(1997).
[9] HILL K O, FUJII Y, JOOHNSON D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).
[10] HILL K O. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 1035-1037(1993).
[11] ZHU Y, MEI H, ZHU T et al. Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain[J]. Chinese Optics Letters, 7, 675-678(2009).
[12] LI G Y, GUAN B O. The strain response of chemical composition gratings at high temperatures[J]. Measurement Science & Technology, 20, 025204(2009).
[13] ZHU Y, MEI H, ZHU T et al. Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain[J]. Chinese Optics Letters, 7, 675-678(2009).
[14] WANG Y P, QIAO X G, YANG H Z et al. Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating[J]. Sensor, 14, 18575-18580(2014).
[15] YANG H Z, QIAO X G, WANG Y P et al. In-fiber Gratings for simultaneous monitoring temperature and strain in ultrahigh temperature[J]. IEEE Photonics Technology Letters, 27, 58-61(2014).
[16] HABISREUTHER T, ELSMANN T, GRAF A et al. High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings[J]. IEEE Photonics Journal, 8, 1-8(2016).
[17] ZHANG P, YANG H, WANG Y et al. Strain measurement at temperatures up to 800 ºC using regenerated gratings produced in the high Ge-doped and B/Ge co-doped fibers[J]. Applied Optics, 56, 6073-6078(2017).
[18] YANG T T, QIAO X G, RONG Q et al. Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement[J]. Optics & Laser Technology, 93, 138-142(2017).
[19] ZHANG Y, DING X, SONG Y et al. Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain[J]. Measurement Science & Technology, 7, 675-678(2018).
[20] GUO Q, YU Y S, ZHENG Z M et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 18, 208-211(2019).
[21] SU D, QIAO X, CHEN F et al. Compact dual fiber Bragg gratings for simultaneous strain and high-temperature measurement[J]. IEEE Sensors Journal, 19, 5660-5664(2019).
[22] VIVEIROS D, AMORIM V A, MAIA J M et al. Femtosecond laser direct written off-axis fiber Bragg gratings for sensing applications[J]. Optics & Laser Technology, 128, 106227(2020).
[23] TIAN Q, XIN G, LIM K S et al. Optical fiber sensor with double tubes for accurate strain and temperature measurement under high temperature up to 1000 ºC[J]. IEEE Sensors Journal, 22, 11710-11716(2022).
[24] JIANG Y, YANG D, YUAN Y et al. Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer[J]. Applied Optics, 55, 6341-6345(2016).
[25] YAN Q, LIU W, DUAN S et al. A cascade structure made by two types of gratings for simultaneous measurement of temperature and strain[J]. Optical Fiber Technology, 42, 105-108(2018).
[26] TIAN Q, YANG H, LIM K S et al. Temperature and strain response of in-fiber air-cavity Fabry-Perot interferometer under extreme temperature condition[J]. Optik, 220, 165034(2020).
[27] YANG, T T, RAN Z, HE X et al. Temperature-compensated multifunctional all-fiber sensors for precise strain/high-pressure measurement[J]. Journal of Lightwave Technology, 37, 4634-4642(2019).
[28] LIU J, WANG D N, LIU Y. Sensitivity improvement by fusion splicing of single mode fibers with core offset[J]. Optical Materials Express, 7, 3722-3730(2017).
[29] PAIXO T, FRANCISCO A. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry-Perot interferometer fabricated by a femtosecond laser[J]. Optics Letters, 44, 4833-4836(2019).
[30] LIU S, WANG Y, LIAO C et al. High-sensitivity strain sensor based on in-fiber improved Fabry–Perot interferometer[J]. Optics Letters, 39, 2121-2124(2014).
[31] ZHOU A, QIN B, ZHU Z et al. Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature[J]. Optics Letters, 39, 5267-5270(2014).
[32] GANG T, TONG R, BIAN C. A novel strain sensor using a fiber taper cascaded with an air bubble based on Fabry–Perot Interferometer[J]. IEEE Sensors Journal, 21, 4618-4622(2020).
[33] CHEN Y, LUO J, LIU S et al. A high-strength strain sensor based on a reshaped micro-air-cavity[J]. Sensors, 20, 4530(2020).
[34] ZHANG P H, ZHANG L, WANG Z Y et al. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures[J]. Optics Express, 27, 27112-27123(2019).
[35] GONG Y, RAO Y J, GUO Y et al. Temperature-insensitive micro Fabry-Pérot strain sensor fabricated by chemically etching Er-doped fiber[J]. IEEE Photonics Journal, 21, 1725-1727(2009).
[36] RAO Yunjiang, LI Hong, ZHU Tao et al. Fabry-Pérot interferometric high temperature strain sensor based on hollow-core photonic crystal fiber[J]. Chinese Laser, 1484-1488(2009).
[37] XIONG L, ZHANG D, LI L et al. EFPI-FBG hybrid sensor for simultaneous measurement of high temperature and large strain[J]. Chinese Optics Letters, 12, 120605-120609(2014).
[38] FERREIRA M S, RORIZ P, BIERLICH J et al. Fabry-Perot cavity based on silica tube for strain sensing at high temperatures[J]. Optics Express, 23, 16063-16070(2015).
[39] LIU H, YANG H Z, QIAO X et al. Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating[J]. Sensors and Actuators A: Physical, 248, 199-205(2016).
[40] YANG T, HE X, RAN Z et al. Highly integrated all-fiber FP/FBG sensor for accurate measurement of strain under high temperature[J]. Materials, 11, 1867(2018).
[41] LIU D, WU Q, MEI C et al. Hollow core fiber based interferometer for high-temperature (1 000 ℃) measurement[J]. Journal of Lightwave Technology, 36, 1583-1590(2018).
[42] WANG Z, LIU H, MA Z et al. High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer[J]. Optics Express, 27, 27691-27701(2019).
[43] NAN J, ZHANG D, WWN X et al. Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length[J]. IEEE Sensors Journal, 20, 5270-5276(2020).
[44] TIAN Q, XIN G, LIM K S et al. Cascaded Fabry-Perot interferometer-regenerated fiber Bragg grating structure for temperature-strain measurement under extreme temperature conditions[J]. Optics Express, 28, 30478-30488(2020).
[45] XIA P, TAN Y, LI T et al. A high-temperature resistant photonic crystal fiber sensor with single-side sliding Fabry-Perot cavity for super-large strain measurement[J]. Sensors and Actuators A Physical, 318, 112492(2020).
[46] LIU X, NAN P, ZHU J et al. Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain[J]. Optics Communications, 508, 127717(2022).
[47] DENG M, TANG C P, ZHU T et al. PCF-based Fabry-Pérot interferometric sensor for strain measurement at high temperatures[J]. IEEE Photonics Technology Letters, 23, 700-702(2011).
[48] ZHOU A, QIN B, ZHU Z et al. Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature[J]. Optics letters, 39, 5267-5270(2014).
[49] ZHOU K, AI M Z, QIAN Z H et al. High-sensitivity strain sensor with an in-fiber air-bubble Fabry-Perot interferometer[J]. Applied Physics Letters, 113, 181901(2018).
[50] ZHANG P, ZHANG L, WANG Z et al. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures[J]. Optics Express, 27, 27112-27113(2019).
[51] LIAO C R, WANG D N, WANG Y. Microfiber in-line Mach-Zehnder interferometer for strain sensing[J]. Optics Letters, 38, 757-759(2013).
[52] DONG X, DU H, LUO Z et al. Highly sensitive strain sensor based on a novel Mach-Zehnder interferometer with TCF-PCF structure[J]. Sensors, 18, 278(2018).
[53] DONG L G, GANG T T, BIAN C et al. A high sensitivity optical fiber strain sensor based on hollow core tapering[J]. Optical Fiber Technology, 56, 102179(2020).
[54] ZHANG N, XU W, YOU S et al. Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF[J]. Optics Communications, 410, 70-74(2018).
[55] LIAO Y C, LIU B, LIU J et al. High temperature (up to 950 ℃) sensor based on micro taper in-line fiber Mach-Zehnder interferometer[J]. Applied Sciences, 9, 2394(2019).
[56] ZHANG C, NING T, ZHENG J et al. An optical fiber strain sensor by using of taper based TCF structure[J]. Optics & Laser Technology, 120, 105687(2019).
[57] LIU J, LUO C, YANG H et al. Mach-Zehnder interferometer for high temperature (1 000 ℃) sensing based on a few-mode fiber[J]. Photonic Sensors, 11, 341-349(2021).
[58] TU Y, TU S T. Fabrication and characterization of a metal-packaged regenerated fiber Bragg grating strain sensor for structural integrity monitoring of high-temperature components[J]. Smart Materials and Structures, 23, 035001(2014).
[59] ZHOU Z, WANG Z, SHAO L. Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment[J]. Journal of Sensors, 2016, 3953750(2016).
[60] PERTIC C M, SRIDHARAN N, HEHR A et al. High-temperature strain monitoring of stainless steel using fiber optics embedded in ultrasonically consolidated nickel layers[J]. Smart Materials and Structures, 28, 085041(2019).
[61] MENG Songhe, DU Chong, XIE Weihua et al. Application of high temperature optical fiber sensor in temperature and strain measurement of thermal structure[J]. Solid Rocket Technology, 36, 701-705(2013).
[62] XIE W, MENG S, JIN H et al. Measurement of high‐temperature strains in superalloy and carbon/carbon composites using chemical composition gratings[J]. Journal of the European Ceramic Society, 38, 1-28(2018).
Get Citation
Copy Citation Text
Hangzhou YANG, Xin LIU, Pengyu NAN, Guoguo XIN. Progress in Research of Optical Fiber High Temperature and Strain Sensor(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1006002
Category: Fiber Optics and Optical Communications
Received: Jul. 18, 2022
Accepted: Oct. 9, 2022
Published Online: Nov. 30, 2022
The Author Email: Guoguo XIN (xinguo@nwu.edu.cn)