Acta Optica Sinica, Volume. 36, Issue 6, 614001(2016)
Astronomical Laser Frequency Comb for High Resolution Spectrograph of a 2.16-m Telescope
[1] [1] Bouchy F, Isambert J, Lovis C, et al.. Charge transfer inefficiency effect for high-precision radial velocity measurements[J]. EAS Publications Series, 2009, 37: 247-253.
[2] [2] Diddams S A, Jones D J, Ye J, et al.. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105.
[3] [3] Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.
[4] [4] Yan Lulu, Zhang Yanyan, Zhao Wenyu, et al.. 186 MHz low amplitude noise erbium-doped-fiber femtosecond laser[J]. Chinese J Lasers, 2014, 41(8): 0802004.
[5] [5] Li C H, Benedick A J, Fendel P, et al.. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm·s-1[J]. Nature, 2008, 452(7187): 610-612.
[6] [6] Steinmetz T, Wilken T, Araujo-Hauck C, et al.. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.
[7] [7] Wilken T, Curto G L, Probst R A, et al.. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level[J]. Nature, 2012, 485(7400): 611-614.
[8] [8] Zhang Zhigang. Advances in high repetition rate femtosecond fiber lasers[J]. Acta Optica Sinica, 2011, 31(9): 0900130.
[9] [9] Li C H, Glenday A G, Phillips D F, et al.. Green astro-comb for HARPS-N[C]. SPIE, 2012, 8446: 84468X.
[10] [10] Glenday A G, Li C H, Langellier N, et al.. Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph[J]. Optica, 2015, 2(3): 250-254.
[11] [11] Probst R A, Curto G L, Avila G, et al.. A laser frequency comb featuring sub-cm/s precision for routine operation on HARPS[C]. SPIE, 2014, 9147: 91471C.
[12] [12] Murphy M, Udem T, Holzwarth R, et al.. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs[J]. Monthly Notices of the Royal Astronomical Society, 2007, 380(2): 839-847.
[13] [13] Steinmetz T, Wilken T, Araujo-Hauck C, et al.. Fabry-Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth[J]. Applied Physics B, 2009, 96(2-3): 251-256.
[14] [14] Probst R A, Steinmetz T, Wilken T, et al.. Nonlinear amplification of side-modes in frequency combs[J]. Optics Express, 2013, 21(10): 11670-11687.
[15] [15] Stark S P, Steinmetz T, Probst R A, et al.. 14 GHz visible supercontinuum generation: Calibration sources for astronomical spectrographs[J]. Optics Express, 2011, 19(17): 15690-15695.
[16] [16] Stark S P, Travers J C, Russell P S J. Extreme supercontinuum generation to the deep UV[J]. Optics Letters, 2012, 37(5): 770-772.
[17] [17] Chang G, Li C H, Phillips D F, et al.. Toward a broadband astro-comb: Effects of nonlinear spectral broadening in optical fibers[J]. Optics Express, 2010, 18(12): 12736-12747.
[18] [18] Probst R A, Steinmetz T, Wilken T, et al.. Spectral flattening of supercontinua with a spatial light modulator[C]. SPIE, 2013, 8864: 88641Z.
[19] [19] Wilken T. Calibrating astronomical spectrographs with frequency combs[D]. Munich: LMU Munich, 2010.
[20] [20] Yang Cong, Han Jian, Wu Yuanjie, et al.. Theoretical and experimental study on suppression of speckle from a multimode optical fiber by dynamic scrambling[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090602.
Get Citation
Copy Citation Text
Wu Yuanjie, Ye Huiqi, Han Jian, Zou Pu, Fu Lingtong, Xiao Dong. Astronomical Laser Frequency Comb for High Resolution Spectrograph of a 2.16-m Telescope[J]. Acta Optica Sinica, 2016, 36(6): 614001
Category: Lasers and Laser Optics
Received: Jan. 8, 2016
Accepted: --
Published Online: Jun. 6, 2016
The Author Email: Yuanjie Wu (yjwu@niaot.ac.cn)