Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1228002(2024)

Semantic Segmentation of Remote Sensing Imagery Based on Improved Squeeze and Excitaion Block

Shengwei Wu1, Jiaoli Fang2、*, and Daming Zhu1
Author Affiliations
  • 1Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650000, Yunnan , China
  • 2Computer Center, Kunming University of Science and Technology, Kunming 650000, Yunnan , China
  • show less
    Figures & Tables(10)
    Residual block structure before and after improvement. (a) SE-ResNet; (b) RSE-ResNet
    RSE-module: structure of the muti-scale RSE-block integration
    Overall structure of the network. (a) RSENet-V1; (b) RSENet-V2; (c) V2 decoder_block
    Visualization analysis results on the Potsdam dataset
    Examples of segmentation results on the Potsdam dataset
    • Table 1. Structure of RSE-ResNet

      View table

      Table 1. Structure of RSE-ResNet

      Layer nameRSE-RseNet18RSE-RseNet36RSE-RseNet50
      layer_1Conv,7 ×7,64,stride 2
      maxpool,3×3,stride 2
      layer_2Conv,3×3,64Conv,3×3,64RSE-block, k,r×2Conv,3×3,64Conv,3×3,64RSE-block, k,r×3Conv,3×3,64Conv,3×3,64RSE-block, k,r×3
      layer_3Conv,3×3,128Conv,3×3,128RSE-block, k,r×2Conv,3×3,128Conv,3×3,128RSE-block, k,r×4Conv,3×3,128Conv,3×3,128RSE-block, k,r×4
      layer_4Conv,3×3,256Conv,3×3,256RSE-block, k,r×2Conv,3×3,256Conv,3×3,256RSE-block, k,r×6Conv,3×3,256Conv,3×3,256RSE-block, k,r×6
      layer_5Conv,3×3,512Conv,3×3,512RSE-block, k,r×2Conv,3×3,512Conv,3×3,512RSE-block, k,r×3Conv,3×3,512Conv,3×3,512RSE-block, k,r×3
    • Table 2. Influence of the value of the hyperparameter k on the network

      View table

      Table 2. Influence of the value of the hyperparameter k on the network

      NetworkmIoU/F1
      k=5k=10k=15k=30
      RSE-ResNet180.711/0.8270.719/0.8330.722/0.8360.716/0.829
      RSE-ResNet340.714/0.8290.721/0.8340.724/0.8360.722/0.833
      RSE-ResNet500.709/0.8250.714/0.8300.717/0.8320.716/0.829
    • Table 3. Comparison results of different networks with different depths

      View table

      Table 3. Comparison results of different networks with different depths

      NetworkF1mIoUMean F1Params
      Impervious surfacesBuildingLow vegetationTreeCarClutter
      ResNet180.8640.8870.8200.7840.8720.6850.6970.819
      SE-ResNet180.8640.8910.8240.7730.8640.7110.7010.8218.70×104
      CBAM-180.8690.8970.8280.7850.8580.6990.7030.8231.70×105
      RSE-ResNet180.8680.9010.8310.7860.8780.7300.7190.8329.00×104
      ResNet340.8700.9010.8260.7880.8750.6800.7010.823
      SE-ResNet340.8690.9030.8270.7870.8790.7100.7150.8291.57×105
      CBAM-340.8750.9090.8320.7800.8730.7350.7200.8343.14×105
      RSE-ResNet340.8760.9120.8330.7880.8810.7370.7240.8381.62×105
      ResNet500.8690.8950.8270.7830.8770.7030.7100.826
      SE-ResNet500.8740.8840.8360.7760.8790.7210.7160.8292.50×106
      CBAM-500.8740.8960.8300.7910.8820.7160.7170.8325.00×106
      RSE-ResNet500.8710.9050.8300.7820.8830.7480.7240.8362.60×106
    • Table 4. Results of RSE-module effectiveness experiment

      View table

      Table 4. Results of RSE-module effectiveness experiment

      NetworkmIoUF1
      Baseline0.7100.827
      CRF0.7090.825
      ASPP(6,12,18)70.7170.831
      PPM(1,3,6,9)60.7180.833
      RSE-module(5,10,15)0.7280.840
    • Table 5. Semantic segmentation results on the Potsdam dataset

      View table

      Table 5. Semantic segmentation results on the Potsdam dataset

      NetworkF1mIoUMean F1
      Impervious surfacesBuildingLow vegetationTreeCarClutter
      RSENet-V20.8860.9160.8350.8150.8820.7560.7380.848
      FCN-32s10.8640.8820.8110.8020.8550.6890.6940.817
      Baseline0.8690.8950.8270.7910.8770.7030.7100.827
      FCN-8s10.8750.9000.8330.7990.8510.7100.7110.828
      HRNet-V2310.8800.9130.8100.8050.8770.6790.7090.828
      DeepLabV3+290.8770.9050.8370.7990.8800.7220.7240.837
      U-Net320.8780.8980.8320.8150.8970.7140.7280.839
      RSENet-V10.8750.9070.8330.7840.8850.7560.7280.840
      SegNet330.8790.9020.8460.8130.8890.7130.7300.840
    Tools

    Get Citation

    Copy Citation Text

    Shengwei Wu, Jiaoli Fang, Daming Zhu. Semantic Segmentation of Remote Sensing Imagery Based on Improved Squeeze and Excitaion Block[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1228002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 13, 2023

    Accepted: Aug. 10, 2023

    Published Online: May. 20, 2024

    The Author Email: Fang Jiaoli (fangjiaoli@163.com)

    DOI:10.3788/LOP231528

    CSTR:32186.14.LOP231528

    Topics