Journal of Semiconductors, Volume. 40, Issue 12, 122101(2019)
Hot electron effects on the operation of potential well barrier diodes
[1] M Akura, G Dunn, J Sexton et al. Potential well barrier diodes for submillimeter wave and high frequency applications. IEEE Electron Device Lett, 38, 438(2017).
[2] R J Malik, T R Aucoin, R L Ross et al. Planar-doped barriers in GaAs by molecular beam epitaxy. Electron Lett, 16, 836(1980).
[3] S Dixon, R Malik. Subharmonic planar doped barrier mixer conversion loss characteristics. IEEE Trans Microwave Theory Tech, 31, 155(1983).
[4]
[5] M Akura, G Dunn, M Missous. A hybrid planar-doped potential-well barrier diode for detector applications. IEEE Trans Electron Devices, 64, 4031(2017).
[6] E Kollberg, L Rydberg. Quantum barrier varactor diodes for high efficiency millimetre-wave multipliers. Electron Lett, 25, 1696(1989).
[7] R K Cook. Computer simulation of carrier transport in planar doped barrier diodes. Appl Phys Lett, 42, 439(1983).
[8] N R Couch, M J Kearney. Hot electron properties of GaAs planar doped barrier diodes. J Appl Phys, 66, 5083(1989).
[9] T Wang, K Hess, G J Lafrate. Time-dependent ensemble Monte Carlo simulation for planar doped GaAs structures. J Appl Phys, 58, 857(1985).
[10] M Akura, G Dunn, J Sexton et al. GaAs/AlGaAs potential well barrier diodes: Novel diode for detector and mixer applications. Phys Status Solidi A, 214, 17002901(2017).
[11] M Akura, G Dunn. Investigating the effect of temperature on barrier height of PWB diodes. Electron Lett, 54, 42(2017).
[12] M Akura, G Dunn, M Missous. Investigating the role of band offset on the property and operation of the potential well barrier diodes. Phys Status Solidi B, 256, 1800284(2019).
[13] Tuyen V Van, B Szentpa'li. Tunneling in planar-doped barrier diodes. J Appl Phys, 68, 2824(1990).
[14] W N Jiang, U K Mishra. Current flow mechanisms in GaAs planar-doped-barrier diodes with high built-in fields. J Appl Phys, 74, 5569(1993).
[15] J Liberis, A Matulionis, P Sakalas et al. Noise in physical systems and 1/
[16] C Li, A Khalid, N Piligrim et al. Novel planar Gunn diode operating in fundamental mode up to 158 GHz. J Phys: Conf Ser, 193, 0120291(2009).
[17] T Teoh, G Dunn, N Priestley et al. Monte Carlo modelling of multiple-transit-region Gunn diodes. Semicond Sci Technol, 17, 1090(2002).
[18] N Pilgrim, R Macpherson, A Khalid et al. Multiple and broad frequency response Gunn diodes. Semicond Sci Technol, 24, 105010(2009).
[19] J C Jacoboni, L Reggiani. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys, 55, 645(1983).
[20] W Fawcett, A D Boardman, S Swain. Monte Carlo determination of electron transport properties in gallium arsenide. J Phys Chem Solids, 31, 1963(1970).
[21] R W Hockney, J W Eastwood. Computer simulation using particles. Bristol and Philadelphia: CRC Press, 374(1988).
[22] K Tomizawa. Numerical simulation of submicron semiconductor devices. London: Artech House, 115(1993).
[23]
[24] C M Snowden. Semiconductor device modelling. London: Peter Peregrinus Ltd, 5, 175(1988).
[25] T Grasser, T Tang, H Kosina et al. A review of hydrodynamic and energy transport models for semiconductor device simulation. Proc IEEE, 91, 251(2003).
[26]
[27] J Frey. Where do hot electrons come from. IEEE Circuits Devices Mag, 7, 31(1991).
[28]
Get Citation
Copy Citation Text
M. Akura, G. Dunn, M. Missous. Hot electron effects on the operation of potential well barrier diodes[J]. Journal of Semiconductors, 2019, 40(12): 122101
Category: Articles
Received: Nov. 19, 2018
Accepted: --
Published Online: Sep. 22, 2021
The Author Email: