Spectroscopy and Spectral Analysis, Volume. 42, Issue 10, 3283(2022)

Construction and Application of ReliefF-RFE Feature Selection Algorithm for Hyperspectral Image Classification

Figures & Tables(10)
Hyperspectral images of each standard dataset(a): Indian pines; (b): Salinas-A; (c): KSC
References of real features for each standard dataset(a): Indian pines; (b): Salinas-A; (c): KSC
Classification results of three feature selection algorithms for hyperspectral images of Indian pines dataset
Classification results of three feature selection algorithms for hyperspectral images of Salinas-A dataset
Classification results of three feature selection algorithms for hyperspectral images of KSC dataset
Comprehensive comparison of three feature selection algorithms(a): Classification accuracy; (b): Feature dimension and runtime
  • Table 1. Hyperspectral dataset description

    View table
    View in Article

    Table 1. Hyperspectral dataset description

    数据集Indian pinesSalinas-AKSC
    特征维数200204176
    样本数10 2495 3485 211
    影像尺寸145×14586×83512×614
    分辨率/m203.718
    地物类别16613
  • Table 2. Classification results based on the best feature subset of the Indian pines dataset

    View table
    View in Article

    Table 2. Classification results based on the best feature subset of the Indian pines dataset

    算法OA
    /%
    F-measure
    /%
    Kappa
    系数
    特征
    维数
    t
    /h
    ReliefF85.5385.150.834 015758.56
    RFE86.4186.100.844 236107.33
    ReliefF-RFE86.2886.000.842 24591.58
  • Table 3. Classification results based on the best feature subset of the Salinas-A dataset

    View table
    View in Article

    Table 3. Classification results based on the best feature subset of the Salinas-A dataset

    算法OA
    /%
    F-measure
    /%
    Kappa
    系数
    特征
    维数
    t
    /h
    ReliefF99.3199.320.991 41806.34
    RFE99.3199.320.991 43511.35
    ReliefF-RFE99.3899.380.992 2718.63
  • Table 4. Classification results with the best feature subset of the KSC dataset

    View table
    View in Article

    Table 4. Classification results with the best feature subset of the KSC dataset

    算法OA
    /%
    F-measure
    /%
    Kappa
    系数
    特征
    维数
    t
    /h
    ReliefF93.2293.140.924 01458.22
    RFE93.4193.310.936 27214.98
    ReliefF-RFE93.1693.060.923 8649.58
Tools

Get Citation

Copy Citation Text

. Construction and Application of ReliefF-RFE Feature Selection Algorithm for Hyperspectral Image Classification[J]. Spectroscopy and Spectral Analysis, 2022, 42(10): 3283

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Oct. 10, 2021

Accepted: Jan. 16, 2022

Published Online: Nov. 23, 2022

The Author Email:

DOI:10.3964/j.issn.1000-0593(2022)10-3283-08

Topics