Journal of Synthetic Crystals, Volume. 53, Issue 4, 676(2024)

First-Principles Study on Photogalvanic Effect and Strain Engineering of Monolayer SnS

XU Zhonghui1,2、*, XU Shengyuan1, LIU Chuanchuan1, and LIU Guogang3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(50)

    [1] [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] [2] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8: 497-501.

    [3] [3] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

    [4] [4] WENG Q H, WANG X B, WANG X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications[J]. Chemical Society Reviews, 2016, 45(14): 3989-4012.

    [5] [5] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials, 2016, 26(18): 3118-3127.

    [6] [6] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9: 372-377.

    [7] [7] DAS S, ZHANG W, DEMARTEAU M, et al. Tunable transport gap in phosphorene[J]. Nano Letters, 2014, 14(10): 5733-5739.

    [8] [8] ZHOU X, ZHANG Q, GAN L, et al. Booming development of group IV-VI semiconductors: fresh blood of 2D family[J]. Advanced Science, 2016, 3(12): 1600177.

    [9] [9] DEMIRCI S, AVAZL N, DURGUN E, et al. Structural and electronic properties of monolayer group III monochalcogenides[J]. Physical Review B, 2017, 95(11): 115409.

    [10] [10] PAN L F, ZOU B S, SHI L J. Electric field modulation of the band gap, dielectric constant and polarizability in SnS atomically thin layers[J]. Physics Letters A, 2016, 380(27/28): 2227-2232.

    [11] [11] YANG Y, ZHOU Y H, LUO Z, et al. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(18): 9296-9301.

    [12] [12] TAN A M Z, GARCIA M A, HENNIG R G. Giant Stokes shift for charged vacancies in monolayer SnS[J]. Physical Review Materials, 2022, 6(4): 044003.

    [13] [13] FEI R X, LI W B, LI J, et al. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS[J]. Applied Physics Letters, 2015, 107(17): 173104.

    [14] [14] KHAN H, MAHMOOD N, ZAVABETI A, et al. Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators[J]. Nature Communications, 2020, 11: 3449.

    [15] [15] FEI R X, KANG W, YANG L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides[J]. Physical Review Letters, 2016, 117(9): 097601.

    [16] [16] HE W K, ANG R, ZHAO L D. Remarkable electron and phonon transports in low-cost SnS: a new promising thermoelectric material[J]. Science China Materials, 2022, 65(5): 1143-1155.

    [17] [17] HU F F, TANG H Y, TAN C J, et al. Nitrogen dioxide gas sensor based on monolayer SnS: a first-principle study[J]. IEEE Electron Device Letters, 2017, 38(7): 983-986.

    [18] [18] TIAN Z, GUO C L, ZHAO M X, et al. Two-dimensional SnS: a phosphorene analogue with strong In-plane electronic anisotropy[J]. ACS Nano, 2017, 11(2): 2219-2226.

    [19] [19] MEINARDI F, MCDANIEL H, CARULLI F, et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots[J]. Nature Nanotechnology, 2015, 10: 878-885.

    [20] [20] HU X M, KANG R D, ZHANG Y Y, et al. Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators[J]. Optics Express, 2015, 23(15): A858.

    [21] [21] LPEZ-MARTNEZ S D, JUREZ-RAMREZ I, TORRES-MARTNEZ L M, et al. SnS-AuPd thin films for hydrogen production under solar light simulation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 361: 19-24.

    [22] [22] REN C X, PENG J B, CHEN H, et al. Understanding dopant-host interactions on electronic structures and optical properties in Ce-doped WS2 monolayers[J]. Advanced Functional Materials, 2023, 33(32): 2301533.

    [23] [23] LIU J, JI X K, SUN M, et al. Linear photogalvanic effects in Janus monolayer MoSSe with intrinsic defects[J]. Optics & Laser Technology, 2023, 159: 108946.

    [24] [24] QI Y P, SADI M A, HU D, et al. Recent progress in strain engineering on van der Waals 2D materials: tunable electrical, electrochemical, magnetic, and optical properties[J]. Advanced Materials, 2023, 35(12): e2205714.

    [25] [25] JIANG X X, XIE W L, XU X H, et al. A bifunctional GeC/SnSSe heterostructure for highly efficient photocatalysts and photovoltaic devices[J]. Nanoscale, 2022, 14(19): 7292-7302.

    [26] [26] BELLANI S, BARTOLOTTA A, AGRESTI A, et al. Solution-processed two-dimensional materials for next-generation photovoltaics[J]. Chemical Society Reviews, 2021, 50(21): 11870-11965.

    [27] [27] WEBSTER L, YAN J A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3[J]. Physical Review B, 2018, 98(14): 144411.

    [28] [28] ZENG B W, LONG M Q, ZHANG X J, et al. Strain engineering on electronic structure and carrier mobility in monolayer GeP3[J]. Journal of Physics D Applied Physics, 2018, 51(23): 235302.

    [29] [29] QIN D, GE X J, DING G Q, et al. Strain-induced thermoelectric performance enhancement of monolayer ZrSe2[J]. RSC Advances, 2017, 7(75): 47243-47250.

    [30] [30] NADUPALLI S, KREISEL J, GRANZOW T. Increasing bulk photovoltaic current by strain tuning[J]. Science Advances, 2019, 5(3): eaau9199.

    [31] [31] ZHANG Y J, IDEUE T, ONGA M, et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes[J]. Nature, 2019, 570: 349-353.

    [32] [32] YANG M M, KIM D J, ALEXE M. Flexo-photovoltaic effect[J]. Science, 2018, 360(6391): 904-907.

    [33] [33] YANG Q, FANG W J, DIAO K Y, et al. Strain regulating mechanical stability and photoelectric properties of CH3NH3PbI3 containing the asymmetric CH3NH3 cations[J]. Materials Today Communications, 2022, 33: 104527.

    [34] [34] DING Y C, ZHAO X F, ZHAO Z E, et al. Strain-manipulated photovoltaic and photoelectric effects of the MAPbBr3 single crystal[J]. ACS Applied Materials & Interfaces, 2022, 14(46): 52134-52139.

    [35] [35] KONG X S, SONG C, CHEN L, et al. First-principles study of substitutional solute and carbon interactions in tungsten[J]. Tungsten, 2022, 4(3): 231-238.

    [36] [36] ZHANG P B, ZHAO J J, ZOU T T, et al. A review of solute-point defect interactions in vanadium and its alloys: first-principles modeling and simulation[J]. Tungsten, 2021, 3(1): 38-57.

    [37] [37] WALDRON D, HANEY P, LARADE B, et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions[J]. Physical Review Letters, 2006, 96(16): 166804.

    [38] [38] TAYLOR J, GUO H, WANG J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Physical Review B, 2001, 63(24): 245407.

    [39] [39] KRESSE G, FURTHMULLER J, HAFNER J. Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation[J]. Physical Review B, Condensed Matter, 1994, 50(18): 13181-13185.

    [40] [40] KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.

    [41] [41] BLCHL P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979.

    [42] [42] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [43] [43] XIE Y Q, ZHANG L, ZHU Y, et al. Photogalvanic effect in monolayer black phosphorus[J]. Nanotechnology, 2015, 26(45): 455202.

    [44] [44] CHU F H, CHEN M Y, WANG Y, et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy[J]. Journal of Materials Chemistry C, 2018, 6(10): 2509-2514.

    [45] [45] KANER N T, WEI Y D, JIANG Y J, et al. Enhanced shift currents in monolayer 2D GeS and SnS by strain-induced band gap engineering[J]. ACS Omega, 2020, 5(28): 17207-17214.

    [46] [46] KHOA D Q, NGUYEN C V, PHUC H V, et al. Effect of strains on electronic and optical properties of monolayer SnS: ab-initio study[J]. Physica B: Condensed Matter, 2018, 545: 255-261.

    [47] [47] GUO S D, WANG Y H. Thermoelectric properties of orthorhombic group IV-VI monolayers from the first-principles calculations[J]. Journal of Applied Physics, 2017, 121(3): 034302.

    [48] [48] BELINICHER V I, STURMAN B I. The photogalvanic effect in media lacking a center of symmetry[J]. Soviet Physics Uspekhi, 1980, 23(3): 199-223.

    [49] [49] IVCHENKO E L, PIKUS G E. Photogalvanic effects in noncentrosymmetric crystals[M]//Semiconductor Physics. Boston, MA: Springer US, 1986: 427-447.

    [50] [50] ZHANG Y M, CAO R G, HU Y B, et al. A promising polarization-sensitive ultraviolet photodetector based on the two-dimensional ZrNBr-ZrNCl lateral heterojunction with enhanced photoresponse: a theoretical prediction[J]. Applied Surface Science, 2021, 560: 149907.

    Tools

    Get Citation

    Copy Citation Text

    XU Zhonghui, XU Shengyuan, LIU Chuanchuan, LIU Guogang. First-Principles Study on Photogalvanic Effect and Strain Engineering of Monolayer SnS[J]. Journal of Synthetic Crystals, 2024, 53(4): 676

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 4, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: Zhonghui XU (longxister@163.com)

    DOI:

    CSTR:32186.14.

    Topics