Acta Optica Sinica, Volume. 39, Issue 8, 0815003(2019)
Multi-Feature Background Modeling Algorithm Based on Improved Census Transform
[8] Stauffer C. Grimson W E L. Adaptive background mixture models for real-time tracking. [C]∥1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 23-25, 1999, Fort Collins, CO, USA. New York: IEEE, 246-252(1999).
[13] Stein F. Efficient computation of optical flow using the census transform[M]. ∥Rasmussen C E, Bülthoff H H, Schölkopf B,
[16] Liao S C, Zhao G Y, Kellokumpu V et al. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. [C]∥2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA. New York: IEEE, 1301-1306(2010).
[17] Wang Y, Jodoin P M, Porikli F et al. CDnet 2014: an expanded change detection benchmark dataset. [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 393-400(2014).
Get Citation
Copy Citation Text
Zhicheng Guo, Jianwu Dang, Yangping Wang, Jing Jin. Multi-Feature Background Modeling Algorithm Based on Improved Census Transform[J]. Acta Optica Sinica, 2019, 39(8): 0815003
Category: Machine Vision
Received: Mar. 6, 2019
Accepted: Apr. 8, 2019
Published Online: Aug. 7, 2019
The Author Email: Jianwu Dang (lzjdgr@163.com)