Chinese Journal of Lasers, Volume. 39, Issue 12, 1214002(2012)

Remote Fiber Bragg Grating Sensors System Based on Self-Heterodyne Detection

Cai Jiangjiang1、*, Xu Guoliang1, Hu Junhui1,2, and Wang Rugang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(14)

    [1] [1] A. D. Kersey, M. A. Davis, H. J. Partrick et al.. Fiber grating sensors[J]. J. Lightwave Technol., 1997, 15(8): 1442~1463

    [4] [4] Zou Hongbo, Liang Dakai, Zeng Jie et al.. Dynamic demodulation of fiber Bragg grating vibration sensor based on cascaded long-period fiber grating[J]. Chinese J. Lasers, 2011, 38(8): 0805005

    [5] [5] J. Lee, J. H. Kim, Y. G. Han et al.. Investigation of Raman fiber laser temperature probe based on fiber Bragg gratings for long distance remote sensing applications[J]. Opt. Express, 2004, 12(8): 1747~1752

    [6] [6] J. H. Lee, Y. Chang, Y. G. Han et al.. Raman amplifier-based long-distance remote, strain and temperature sensing system using an erbium-doped fiber and a fiber Bragg grating[J]. Opt. Express, 2004, 12(15): 3515~3520

    [7] [7] P. C. Peng, K. M. Feng, W. R. Peng et al.. Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA[J]. Opt. Commun., 2005, 252(1-3): 127~131

    [8] [8] Y. J. Rao, Z. L. Ran, X. D. Luo. An ultra-long-distance FBG sensor system based on a tunable fiber ring laser configuration[C]. Anaheim: Optical Fiber Communication, Conference and Exposition National Fiber Optic Engineers Conference, 2007. 1~3

    [9] [9] Y. J. Rao, S. Feng, Q. Jiang et al.. Ultra-long distance (300 km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification [C]. SPIE, 2009, 7503: 75031Q

    [10] [10] J. H. Hu, Z. H. Chen, X. F. Yang et al.. 100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and Raman amplification[J]. IEEE Photon. Technol. Lett., 2010, 22(19): 1422~1424

    [11] [11] R. G. Wang, X. P. Zhang, J. H. Hu et al.. Photonic generation of tunable microwave signal using Brillouin fiber laser[J]. Appl. Opt., 2012, 51(8): 1028~1032

    [12] [12] F. Wang, C. L. Li, X. D. Zhao et al.. Using a Mach-Zehnder-interference-based passive configuration to eliminate the polarization noise in Brillouin optical time domain reflectometry[J]. Appl. Opt., 2012, 51(2): 176~180

    [13] [13] Wang Feng. Research of the Spatial Resolution for the Fully Distributed Optical Fiber Sensor Based on Brillouin Scattering[D]. Nanjing: Nanjing University, 2009. 20~22

    [14] [14] A. Yariv, P. Yeh. Optical Electronics in Modern Communications[M]. New York & Oxford: Oxford University Press, 2007. 507~509

    CLP Journals

    [1] Li Zhengying, Sun Wenfeng, Wang Honghai. Research on the Ultra-Weak Reflective Fiber Bragg Grating Sensing Technology Based on Optical Frequency Domain Reflection Technology[J]. Acta Optica Sinica, 2015, 35(8): 806003

    [2] Zhang Caixia, Zhang Zhenwei, Zheng Wanfu, Liu Xiaohang, Li Yi, Dong Xinyong. Study of a Quasi-Distributed Optical Fiber Sensing System Based on Ultra-Weak Fiber Bragg Gratings[J]. Chinese Journal of Lasers, 2014, 41(4): 405004

    [3] Zhang Xinxin, She Weilong. Electrically Controlled Grating Based on PPLN[J]. Acta Optica Sinica, 2015, 35(1): 105001

    Tools

    Get Citation

    Copy Citation Text

    Cai Jiangjiang, Xu Guoliang, Hu Junhui, Wang Rugang. Remote Fiber Bragg Grating Sensors System Based on Self-Heterodyne Detection[J]. Chinese Journal of Lasers, 2012, 39(12): 1214002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: Jul. 5, 2012

    Accepted: --

    Published Online: Nov. 6, 2012

    The Author Email: Jiangjiang Cai (cjj63@163.com)

    DOI:10.3788/cjl201239.1214002

    Topics