Electronics Optics & Control, Volume. 32, Issue 8, 32(2025)
Research on Lightweight Remote Sensing Target Detection Algorithm Based on Improved YOLOv8n
[1] [1] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 21-37.
[2] [2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016: 779-788.
[3] [3] HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
[4] [4] GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1440-1448.
[5] [5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] [6] ZHANG K H, SHEN H K. Multi-stage feature enhancement pyramid network for detecting objects in optical remote sensing images[J]. Remote Sensing, 2022, 14(3): 579.
[7] [7] LIU J H, YANG D H, HU F. Multiscale object detection in remote sensing images combined with multi-receptive-field features and relation-connected attention[J]. Remote Sensing, 2022, 14(2): 427.
[11] [11] LIN T-Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 2117-2125.
[12] [12] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City: IEEE, 2018: 8759-8768.
[13] [13] WANG C-Y, LIAO H-Y M, WU Y-H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle: IEEE, 2020: 390-391.
[14] [14] WU T Y, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2020, 30: 1169-1179.
[15] [15] CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPs for faster neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 12021-12031.
[16] [16] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[17] [17] ZHANG H, ZHANG S J. Shape-IoU: more accurate metric considering bounding box shape and scale [R]. Los Alamos: arXiv Preprint, 2023: arXiv: 2312. 17663.
[18] [18] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[R]. Los Alamos: arXiv Preprint, 2024: arXiv: 2401. 10525.
[19] [19] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
[20] [20] XIA G-S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 3974-3983.
Get Citation
Copy Citation Text
LYU Yukai, LUO Xiaoling, CHENG Huanxin, YU Shajia. Research on Lightweight Remote Sensing Target Detection Algorithm Based on Improved YOLOv8n[J]. Electronics Optics & Control, 2025, 32(8): 32
Category:
Received: Jun. 10, 2024
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: