Opto-Electronic Engineering, Volume. 52, Issue 7, 250089(2025)

Research on microscopic image aberration detection technology using Hartmann wavefront detection

Yifan Bu, Youyun Zou, Wenjie Du, Jie Deng, Xinlei Ge, and Jianqiang Ma*
Author Affiliations
  • School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China
  • show less
    Figures & Tables(13)
    Schematic diagram of the detection principle
    Schematic diagram of the two-sphere method. (a) Confocal position 0°; (b) Confocal position 180°; (c) Cat's eye position
    Zemax optical path model. (a) Objective lens to be tested; (b) Optical path without microscope objective lens; (c) Optical path at confocal position; (d) Optical path at cat's eye position
    Wavefront aberration map. (a) Original aberration of the objective lens; (b) Original aberration of the spherical mirror; (c) Aberration at 0° confocal position; (d) Aberration at 180° confocal position; (e) Aberration at cat's eye position; (f) Aberration of the optical path without the objective lens; (g) Computed aberration of the spherical mirror; (h) Computed aberration of the objective lens
    Experimental setup picture
    Optical axis coordinate positioning diagram
    Wavefront aberration map. (a) 0° confocal position; (b) 180° confocal position; (c) Cat's eye position; (d) Detection optical path without the microscope objective; (e) Spherical mirror; (f) Microscope objective
    Comparison diagrams of Zernike coefficients before and after calibration of microscope objectives
    Comparison diagrams of PV and RMS calibration of microscope objectives
    Comparison of different angles of the objective. (a) 0°;(b) 90°; (c) 180°; (d) 270°
    • Table 1. Simulation data for each detection position

      View table
      View in Article

      Table 1. Simulation data for each detection position

      Detection positionPV/nmRMS/nm
      Original aberration of the objective lens12531
      Original aberration of the spherical mirror4212
      Aberration at 0° confocal position27564
      Aberration at 180° confocal position27564
      Aberration at cat's eye position27965
      Aberration of the detection optical path4112
      Computed aberration of the spherical mirror309
      Computed aberration of the objective lens12630
    • Table 2. Wavefront data for each detection position

      View table
      View in Article

      Table 2. Wavefront data for each detection position

      Detection positionPV/nmRMS/nm
      Aberration at 0° confocal position33073
      Aberration at 180° confocal position32972
      Aberration at cat's eye position25861
      Aberration of the detection optical path8714
      Computed aberration of the spherical mirror447
      Computed aberration of the objective lens14833
    • Table 3. Wavefront data of the microscope objective at different rotation angles

      View table
      View in Article

      Table 3. Wavefront data of the microscope objective at different rotation angles

      Rotation angles/(°)PV/nmRMS/nm
      014833
      9016435
      18014734
      27013732
    Tools

    Get Citation

    Copy Citation Text

    Yifan Bu, Youyun Zou, Wenjie Du, Jie Deng, Xinlei Ge, Jianqiang Ma. Research on microscopic image aberration detection technology using Hartmann wavefront detection[J]. Opto-Electronic Engineering, 2025, 52(7): 250089

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Mar. 19, 2025

    Accepted: Jun. 2, 2025

    Published Online: Sep. 4, 2025

    The Author Email: Jianqiang Ma (马剑强)

    DOI:10.12086/oee.2025.250089

    Topics