Opto-Electronic Engineering, Volume. 52, Issue 7, 250089(2025)
Research on microscopic image aberration detection technology using Hartmann wavefront detection
Fig. 2. Schematic diagram of the two-sphere method. (a) Confocal position 0°; (b) Confocal position 180°; (c) Cat's eye position
Fig. 3. Zemax optical path model. (a) Objective lens to be tested; (b) Optical path without microscope objective lens; (c) Optical path at confocal position; (d) Optical path at cat's eye position
Fig. 4. Wavefront aberration map. (a) Original aberration of the objective lens; (b) Original aberration of the spherical mirror; (c) Aberration at 0° confocal position; (d) Aberration at 180° confocal position; (e) Aberration at cat's eye position; (f) Aberration of the optical path without the objective lens; (g) Computed aberration of the spherical mirror; (h) Computed aberration of the objective lens
Fig. 7. Wavefront aberration map. (a) 0° confocal position; (b) 180° confocal position; (c) Cat's eye position; (d) Detection optical path without the microscope objective; (e) Spherical mirror; (f) Microscope objective
Fig. 8. Comparison diagrams of Zernike coefficients before and after calibration of microscope objectives
Fig. 9. Comparison diagrams of PV and RMS calibration of microscope objectives
Fig. 10. Comparison of different angles of the objective. (a) 0°;(b) 90°; (c) 180°; (d) 270°
|
|
|
Get Citation
Copy Citation Text
Yifan Bu, Youyun Zou, Wenjie Du, Jie Deng, Xinlei Ge, Jianqiang Ma. Research on microscopic image aberration detection technology using Hartmann wavefront detection[J]. Opto-Electronic Engineering, 2025, 52(7): 250089
Category: Article
Received: Mar. 19, 2025
Accepted: Jun. 2, 2025
Published Online: Sep. 4, 2025
The Author Email: Jianqiang Ma (马剑强)