APPLIED LASER, Volume. 43, Issue 11, 63(2023)
Simulation of Temperature Field and Analysis of Crystallization Evolution in Laser Butt Welding of Zr-Based Amorphous Alloys
[3] [3] INOUE A, TAKEUCHI A. Recent development and applications of bulk glassy alloys[J]. International Journal of Applied Glass Science, 2010, 1(3): 273-295.
[5] [5] LU W T, ZHANG L C, XU J A. Nb-60Ta-2Zr alloy exposed to simulated physiological medium: Metallic-ion release behaviour and its correlation with electrochemical properties[J]. Corrosion Science, 2022, 196: 110034.
[9] [9] KIM J. Weldability of Cu54Zr22Ti18Ni6 bulk metallic glass by ultrasonic welding processing[J]. Materials Letters, 2014, 130: 160-163.
[10] [10] WANG G, HUANG Y J, MAKHANLALL D, et al. Friction joining of Ti40Zr25Ni3Cu12Be20 bulk metallic glass[J]. Journal of Materials Processing Technology, 2012, 212(9): 1850-1855.
[11] [11] KOBATA J, TAKIGAWA Y, CHUNG S W, et al. Nanoscale amorphous “band-like” structure induced by friction stir processing in Zr55Cu30Al10Ni5 bulk metallic glass[J]. Materials Letters, 2007, 61(17): 3771-3773.
[12] [12] LIANG H L, LUO N, LI X J, et al. Joining of Zr60Ti17Cu12Ni11 bulk metallic glass and aluminum 1060 by underwater explosive welding method[J]. Journal of Manufacturing Processes, 2019, 45: 115-122.
[13] [13] ANDREOLI A F, PONSONI J B, SOARES C, et al. Resistance upset welding of Zr-based bulk metallic glasses[J]. Journal of Materials Processing Technology, 2018, 255: 760-764.
[14] [14] CHEN B A, SHI T L, LI M, et al. Laser welding of Zr41Ti14Cu12Ni10Be23 bulk metallic glass: Experiment and temperature field simulation[J]. Advanced Engineering Materials, 2013, 15(5): 407-413.
[19] [19] BUSTO V, COVIELLO D, LOMBARDI A, et al. Thermal finite element modeling of the laser beam welding of tailor welded blanks through an equivalent volumetric heat source[J].The International Journal of Advanced Manufacturing Technology, 2022, 119(1/2): 137-148.
[22] [22] SCINTILLA L D, TRICARICO L. Optimization of AZ31 magnesium alloy laser beam welding parameters based on process efficiency calculation by finite element method and joint mechanical properties[J]. Optical Engineering, 2013, 52(10): 105101.
[23] [23] WANG H Y, YU C, XU W H, et al. Microstructure transformation in different regions of Zr61.4Cu27.8Al4Ni6Y0.8 bulk metallic glass induced by rapid laser welding[J]. Metals and Materials International, 2021, 27(12): 5314-5321.
[24] [24] HUANG H, QIAN Y F, WANG C, et al. Laser induced micro-cracking of Zr-based metallic glass using 1 011 W/m2 nano-pulses[J]. Materials Today Communications, 2020, 25: 101554.
[25] [25] WANG H S, CHEN H G, JANG J S C. Microstructure evolution in Nd: YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy[J]. Journal of Alloys and Compounds, 2010, 495(1): 224-228.
[26] [26] WANG H S, CHIOU M S, CHEN H G, et al. The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass[J]. Materials Chemistry and Physics, 2011, 129(1/2): 547-552.
Get Citation
Copy Citation Text
Liu Wumeng, Guo Chun, Li Yun, Wu Suisong, Ying Meng, Kang Taiyu. Simulation of Temperature Field and Analysis of Crystallization Evolution in Laser Butt Welding of Zr-Based Amorphous Alloys[J]. APPLIED LASER, 2023, 43(11): 63
Received: May. 30, 2022
Accepted: --
Published Online: May. 23, 2024
The Author Email: