Opto-Electronic Engineering, Volume. 50, Issue 11, 230194-1(2023)
Design theory and method of off-axis four-mirror telescope for space-based gravitational-wave mission
[1] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 116, 061102(2016).
[2] Acernese F, Agathos M, Agatsuma K et al. Advanced Virgo: a second-generation interferometric gravitational wave detector[J]. Class Quantum Gravity, 32, 024001(2015).
[3] Wanner G. Complex optical systems in space: numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA[D], 1-106(2010).
[4] Danzmann K. LISA mission overview[J]. Adv Space Res, 25, 1129-1136(2000).
[5] Cornelisse J W. Lisa mission and system design[J]. Class Quantum Gravity, 13, A251-A258(1996).
[6] Kawamura S, Ando M, Seto N et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO[J]. Prog Theor Exp Phys, 2021, 05A105(2021).
[7] Luo J, Chen L S, Duan H Z et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Gravity, 33, 035010(2016).
[8] Luo Z R, Wang Y, Wu Y L et al. The Taiji program: a concise overview[J]. Prog Theor Exp Phys, 2021, 05A108(2021).
[9] Schuster S, Wanner G, Tröbs M et al. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Appl Opt, 54, 1010-1014(2015).
[10] Wanner G, Heinzel G, Kochkina E et al. Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams[J]. Opt Commun, 285, 4831-4839(2012).
[11] Schuster S, Tröbs M, Wanner G et al. Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system[J]. Opt Express, 24, 10466-10475(2016).
[12] Sasso C P, Mana G, Mottini S. The LISA interferometer: impact of stray light on the phase of the heterodyne signal[J]. Class Quantum Gravity, 36, 075015(2019).
[13] Spector A, Mueller G. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors[J]. Class Quantum Gravity, 29, 205005(2012).
[14] Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Gravity, 37, 065005(2020).
[15] Livas J C, Arsenovic P, Crow J A et al. Telescopes for space-based gravitational wave missions[J]. Opt Eng, 52, 091811(2013).
[16] Mi Z X, Li Z X, Zhang X D. Construction of a compact off-axis three-mirror reflective system[J]. Appl Opt, 61, 2424-2431(2022).
[17] Xu S, Cui Z, Qi B. Compensation factors for 3rd order coma in three mirror anastigmatic (TMA) telescopes[J]. Opt Express, 26, 298-310(2018).
[18] Ji H R, Zhu Z B, Tan H et al. Design of a high-throughput telescope based on scanning an off-axis three-mirror anastigmat system[J]. Appl Opt, 60, 2817-2823(2021).
[19] Sankar S R, Livas J C. Optical telescope design for a space-based gravitational-wave mission[J]. Proc SPIE, 9143, 914314(2014).
[20] Tian S H, Huang Y M, Xu Y J et al. Study of off-axis telescope misalignment correction method using out-of-focus spot[J]. Opto-Electron Eng, 50, 230040(2023).
[21] McNamara P W. Development of optical techniques for space-borne laser interferometric gravitational wave detectors[D], 1-144(1998).
[22] Kim D, Choi H, Brendel T et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 4, 210040(2021).
[23] Livas J, Sankar S, West G et al. eLISA telescope in-field pointing and scattered light study[J]. J Phys Conf Ser, 840, 012015(2017).
[24] Niu S X, Jiang J, Tang T et al. Optimal design of Youla controller for vibration rejection in telescopes[J]. Opto-Electron Eng, 47, 190547(2020).
[25] Wang Z, Yu T, Zhao Y et al. Research on telescope TTL coupling noise in intersatellite laser interferometry[J]. Photonic Sens, 10, 265-274(2020).
[26] Zhao Y, Shen J, Fang C et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Appl Opt, 60, 438-444(2021).
[27] Lehan J P, Howard J M, Li H et al. Pupil aberrations in the LISA transceiver design[J]. Proc SPIE, 11479, 114790D(2020).
[29] Mahajan V N. Strehl ratio for primary aberrations in terms of their aberration variance[J]. J Opt Soc Am, 73, 860-861(1983).
[30] Livas J C, Sankar S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proc SPIE, 9904, 99041K(2016).
[31] Chwalla M, Danzmann K, Barranco G F et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling[J]. Class Quantum Gravity, 33, 245015(2016).
[32] Gross H[M]. Handbook of Optical Systems, 1-49(2005).
[33] Sasián J. Theory of sixth-order wave aberrations[J]. Appl Opt, 49, D69-D95(2010).
[34] Fan Z C, Zhao L J, Cao S Y et al. High performance telescope system design for the TianQin project[J]. Class Quantum Gravity, 39, 195017(2022).
[35] Lakshminarayanan V, Fleck A. Zernike polynomials: a guide[J]. J Mod Opt, 58, 545-561(2011).
Get Citation
Copy Citation Text
Zichao Fan, Hao Tan, Yan Mo, Haibo Wang, Lujia Zhao, Huiru Ji, Zhiyu Jiang, Ruyi Peng, Liping Fu, Donglin Ma. Design theory and method of off-axis four-mirror telescope for space-based gravitational-wave mission[J]. Opto-Electronic Engineering, 2023, 50(11): 230194-1
Category: Article
Received: Aug. 8, 2023
Accepted: Oct. 19, 2023
Published Online: Mar. 26, 2024
The Author Email: Donglin Ma (马冬林)