Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 169(2022)

Recent progress of functional mesogen-jacketed liquid crystal polymers

WU Bo-xi*, LUO Zhi-wang, DENG Yuan, WANG Ping, and XIE He-lou
Author Affiliations
  • [in Chinese]
  • show less
    References(59)

    [3] [3] FINKELMANN H, RINGSDORF H, WENDORFF J H. Model considerations and examples of enantiotropic liquid crystalline polymers [J]. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1978, 179(1): 273-276.

    [4] [4] ZHOU Q F, LI H M, FENG X D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens [J]. Macromolecules, 1987, 20(1): 233-234.

    [5] [5] XU G Z, WU W, SHEN D Y, et al. Morphological study of oriented films obtained from side-chain liquid crystalline polymers [J]. Polymer, 1993, 34(9): 1818-1822.

    [6] [6] LYU X L, XIAO A Q, SHI D, et al. Liquid crystalline polymers: discovery, development, and the future [J]. Polymer, 2020, 202: 122740.

    [7] [7] ZHOU Q F, ZHU X L, WEN Z Q. Liquid-crystalline side-chain polymers without flexible spacer [J]. Macromolecules, 1989, 22(1): 491-493.

    [9] [9] ZHANG D, LIU Y X, WAN X H, et al. Synthesis and characterization of a new series of “mesogen-jacketed liquid crystal polymers” based on the newly synthesized vinylterephthalic acid [J]. Macromolecules, 1999, 32(16): 5183-5185.

    [10] [10] YE C, ZHANG H L, HUANG Y, et al. Molecular weight dependence of phase structures and transitions of mesogen-jacketed liquid crystalline polymers based on 2-vinylterephthalic acids [J]. Macromolecules, 2004, 37(19): 7188-7196.

    [12] [12] TU H L, ZHANG D, WAN X H, et al. Mesogen-jacketed liquid crystalline polymer with flexible dicyclopentyl terephthalate as side group [J]. Macromolecular Rapid Communications, 1999, 20(10): 549-551.

    [13] [13] ZHANG D, LIU Y X, WAN X H, et al. Synthesis of a new side-chain type liquid crystal polymer poly [dicyclohexyl vinylterephthalate] [J]. Macromolecules, 1999, 32(13): 4494-4496.

    [14] [14] TU H L, WAN X H, LIU Y X, et al. Self-assembly-induced supramolecular hexagonal columnar liquid crystalline phase using laterally attached nonmesogenic templates [J]. Macromolecules, 2000, 33(17): 6315-6320.

    [15] [15] YIN X Y, YE C, MA X, et al. Manipulating supramolecular self-assembly via tailoring pendant group size of linear vinyl polymers [J]. Journal of the American Chemical Society, 2003, 125(23): 6854-6855.

    [16] [16] XIE H L, HU T H, ZHANG X F, et al. Design, synthesis, and characterization of a combined main-chain/side-chain liquid crystalline polymer based on mesogen-jacketed liquid crystal polymer via atom transfer radical polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(22): 7310-7320.

    [17] [17] XIE H L, JIE C K, YU Z Q, et al. Hierarchical supramolecular ordering with biaxial orientation of a combined main-chain/side-chain liquid-crystalline polymer obtained from radical polymerization of 2-vinylterephthalate [J]. Journal of the American Chemical Society, 2010, 132(23): 8071-8080.

    [18] [18] LIM L S, HARADA T, HILLMYER M A, et al. High strength polyolefin block copolymers [J]. Macromolecules, 2004, 37(16): 5847-5850.

    [19] [19] LUO Y W, WANG X G, ZHU Y, et al. Polystyrene-block-poly(n-butyl acrylate)-block-polystyrene triblock copolymer thermoplastic elastomer synthesized via RAFT emulsion polymerization [J]. Macromolecules, 2010, 43(18): 7472-7481.

    [20] [20] ZHANG Z Y, ZHANG Q K, SHEN Z H, et al. Synthesis and characterization of new liquid crystalline thermoplastic elastomers containing mesogen-jacketed liquid crystalline polymers [J]. Macromolecules, 2016, 49(2): 475-482.

    [21] [21] ZHANG Z Y, ZHANG Q K, YU J P, et al. Synthesis and properties of a new high-temperature liquid crystalline thermoplastic elastomer based on mesogen-jacketed liquid crystalline polymer [J]. Polymer, 2017, 108: 50-57.

    [22] [22] XU J Q, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries [J]. Journal of Power Sources, 2008, 177(2): 512-527.

    [23] [23] DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: present, past and future [J]. Electrochimica Acta, 2011, 57: 4-13.

    [24] [24] ZHANG Q Q, LIU K, DING F, et al. Recent advances in solid polymer electrolytes for lithium batteries [J]. Nano Research, 2017, 10(12): 4139-4174.

    [25] [25] QU W, ZHU X Q, CHEN J H, et al. Synthesis and characterization of a Mesogen-jacketed polyelectrolyte [J]. Macromolecules, 2014, 47(8): 2727-2735.

    [26] [26] PING J, PAN Y, PAN H B, et al. Microphase separation and high ionic conductivity at high temperatures of lithium salt-doped amphiphilic alternating copolymer brush with rigid side chains [J]. Macromolecules, 2015, 48(23): 8557-8564.

    [27] [27] PING J, PAN H B, HOU P P, et al. Solid polymer electrolytes with excellent high-temperature properties based on brush block copolymers having rigid side chains [J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6130-6137.

    [28] [28] WU F, LUO L F, TANG Z H, et al. Block copolymer electrolytes with excellent properties in a wide temperature range [J]. ACS Applied Energy Materials, 2020, 3(7): 6536-6543.

    [29] [29] GRELL M, BRADLEY D D C. Polarized luminescence from oriented molecular materials [J]. Advanced Materials, 1999, 11(11): 895-905.

    [30] [30] JEONG Y S, AKAGI K. Liquid crystalline PEDOT derivatives exhibiting reversible anisotropic electrochromism and linearly and circularly polarized dichroism [J]. Journal of Materials Chemistry, 2011, 21(28): 10472-10481.

    [31] [31] SCHADT M. Linear and non-linear liquid crystal materials, electro-optical effects and surface interactions. Their application in present and future devices [J]. Liquid Crystals, 1993, 14(1): 73-104.

    [32] [32] VIJAYARAGHAVAN R K, ABRAHAM S, AKIYAMA H, et al. Photoresponsive glass-forming butadiene-based chiral liquid crystals with circularly polarized photoluminescence [J]. Advanced Functional Materials, 2008, 18(17): 2510-2517.

    [33] [33] JAKUBIAK R, COLLISON C J, WAN W C, et al. Aggregation quenching of luminescence in electroluminescent conjugated polymers [J]. The Journal of Physical Chemistry A, 1999, 103(14): 2394-2398.

    [34] [34] SAPSFORD K E, BERTI L, MEDINTZ I L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations [J]. Angewandte Chemie International Edition, 2006, 45(28): 4562-4589.

    [35] [35] LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chemical Communications, 2001(18): 1740-1741.

    [36] [36] MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar! [J]. Chemical Reviews, 2015, 115(21): 11718-11940.

    [37] [37] GUO Y, SHI D, LUO Z W, et al. High efficiency luminescent liquid crystalline polymers based on aggregation-induced emission and “jacketing” effect: design, synthesis, photophysical property, and phase structure [J]. Macromolecules, 2017, 50(24): 9607-9616.

    [38] [38] ZHU J C, HAN T, GUO Y, et al. Design and synthesis of luminescent liquid crystalline polymers with “Jacketing” effect and luminescent patterning applications [J]. Macromolecules, 2019, 52(10): 3668-3679.

    [39] [39] LUO Z W, TAO L, ZHONG C L, et al. High-efficiency circularly polarized luminescence from chiral luminescent liquid crystalline polymers with aggregation-induced emission properties [J]. Macromolecules, 2020, 53(22): 9758-9768.

    [40] [40] KATO T, KIHARA H, KUMAR U, et al. A liquid-crystalline polymer network built by molecular self-assembly through intermolecular hydrogen bonding [J]. Angewandte Chemie International Edition in English, 1994, 33(15/16): 1644-1645.

    [41] [41] ZHU Y L, ZHENG M Q, TU Y Y, et al. Supramolecular fluorescent polymers containing α-cyanostilbene-based stereoisomers: Z/E-Isomerization induced multiple reversible switching [J]. Macromolecules, 2018, 51(9): 3487-3496.

    [42] [42] TAO L, LI M L, YANG K P, et al. Color-tunable and stimulus-responsive luminescent liquid crystalline polymers fabricated by hydrogen bonding [J]. ACS Applied Materials & Interfaces, 2019, 11(16): 15051-15059.

    [43] [43] TAO L, LUO Z W, LAN K, et al. Stimuli-responsive luminescent supramolecular polymers based on hydrogen bonding: molecular fabrication, phase structure, and controllable-rewritable behavior [J]. Polymer Chemistry, 2020, 11(39): 6288-6294.

    [44] [44] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51(12): 913-915.

    [45] [45] VEINOT J G C, MARKS T J. Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers [J]. Accounts of Chemical Research, 2005, 38(8): 632-643.

    [46] [46] BURN P L, LO S C, SAMUEL I D W. The development of light-emitting dendrimers for displays [J]. Advanced Materials, 2007, 19(13): 1675-1688.

    [47] [47] WANG P, CHAI C P, CHUAI Y T, et al. Blue light-emitting diodes from mesogen-jacketed polymers containing oxadiazole units [J]. Polymer, 2007, 48(20): 5889-5895.

    [48] [48] JIN H, XU Y D, SHEN Z H, et al. Jacketed polymers with dendritic carbazole side groups and their applications in blue light-emitting diodes [J]. Macromolecules, 2010, 43(20): 8468-8478.

    [49] [49] WANG P, CHAI C P, YANG Q, et al. Synthesis and characterization of bipolar copolymers containing oxadiazole and carbazole pendant groups and their application to electroluminescent devices [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(16): 5452-5460.

    [50] [50] WANG P, JIN H, LIU W L, et al. Bipolar copolymers comprised mesogen-jacketed polymer containing oxadiazole units and PVK as host materials for electroluminescent devices [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(23): 7861-7867.

    [51] [51] WANG P, YANG Q, JIN H, et al. Synthesis, photophysics, and electroluminescence of copolyfluorenes containing jacketed and silyl units [J]. Macromolecules, 2008, 41(22): 8354-8359.

    [52] [52] ZHANG W, JIN H, WANG D, et al. Jacketed homopolymer with bipolar dendritic side groups and its applications in electroluminescent devices [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(3): 581-589.

    [53] [53] MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes [J]. Synthetic Metals, 1998, 94(3): 245-248.

    [54] [54] BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154.

    [55] [55] ZHANG S T, YAO L, PENG Q M, et al. Achieving a significantly increased efficiency in nondoped pure blue fluorescent OLED: a quasi-equivalent hybridized excited state [J]. Advanced Functional Materials, 2015, 25(11): 1755-1762.

    [56] [56] JIN H, ZHANG W, WANG D, et al. Dendron-jacketed electrophosphorescent copolymers: improved efficiency and tunable emission color by partial energy transfer [J]. Macromolecules, 2011, 44(24): 9556-9564.

    [57] [57] KIM T, KIM J H, KANG T E, et al. Flexible, highly efficient all-polymer solar cells [J]. Nature Communications, 2015, 6(1): 8547.

    [58] [58] ZHOU N J, LIN H, LOU S J, et al. Morphology-performance relationships in high-efficiency all-polymer solar cells [J]. Advanced Energy Materials, 2014, 4(3): 1300785.

    [59] [59] LI H Y, HWANG Y J, COURTRIGHT B A E, et al. Fine-tuning the 3D structure of nonfullerene electron acceptors toward high-performance polymer solar cells [J]. Advanced Materials, 2015, 27(21): 3266-3272.

    [60] [60] GUO Y K, LI Y K, AWARTANI O, et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor [J]. Advanced Materials, 2017, 29(26): 1700309.

    [61] [61] TAO L, CHEN H, KUANG Z Y, et al. “Jacketing” effect liquid crystalline polymer with perylenediimide as side Chain: synthesis, liquid crystalline phase, and photovoltaic performances [J]. ACS Applied Energy Materials, 2018, 1(8): 4122-4129.

    [62] [62] MENG D, SUN D, ZHONG C M, et al. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor [J]. Journal of the American Chemical Society, 2016, 138(1): 375-380.

    [63] [63] ZHANG Y F, WANG Y C, YU X S, et al. Isophthalate-based room temperature phosphorescence: from small molecule to side-chain jacketed liquid crystalline polymer [J]. Macromolecules, 2019, 52(6): 2495-2503.

    Tools

    Get Citation

    Copy Citation Text

    WU Bo-xi, LUO Zhi-wang, DENG Yuan, WANG Ping, XIE He-lou. Recent progress of functional mesogen-jacketed liquid crystal polymers[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 169

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 26, 2021

    Accepted: --

    Published Online: Mar. 1, 2022

    The Author Email: WU Bo-xi (1286782360@qq.com)

    DOI:10.37188/cjlcd.2021-0301

    Topics