Acta Optica Sinica, Volume. 39, Issue 8, 0815006(2019)
Three-Dimensional Object Recognition Based on Enhanced Point Pair Features
[4] Tombari F. Salti S, di Stefano L. Performance evaluation of 3D keypoint detectors[J]. International Journal of Computer Vision, 102, 198-220(2013).
[6] Yang J Q, Xian K, Xiao Y et al. Performance evaluation of 3D correspondence grouping algorithms. [C]∥2017 International Conference on 3D Vision (3DV), October 10-12, 2017, Qingdao. New York: IEEE, 467-176(2017).
[8] Drost B, Ulrich M, Navab N et al. Model globally, match locally: efficient and robust 3D object recognition. [C]∥2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA. New York: IEEE, 998-1005(2010).
[9] Drost B, Ilic S. 3D object detection and localization using multimodal point pair features. [C]∥2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, October 13-15, 2012, Zurich, Switzerland. New York: IEEE, 9-16(2012).
[10] Choi C, Christensen H I. 3D pose estimation of daily objects using an RGB-D camera. [C]∥2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 7-12, 2012, Vilamoura-Algarve, Portugal. New York: IEEE, 3342-3349(2012).
Get Citation
Copy Citation Text
Rongrong Lu, Feng Zhu, Qingxiao Wu, Foji Chen, Yunge Cui, Yanzi Kong. Three-Dimensional Object Recognition Based on Enhanced Point Pair Features[J]. Acta Optica Sinica, 2019, 39(8): 0815006
Category: Machine Vision
Received: Mar. 5, 2019
Accepted: May. 5, 2019
Published Online: Aug. 7, 2019
The Author Email: Rongrong Lu (lurongrong@sia.cn), Feng Zhu (fzhu@sia.cn)