Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 11, 1488(2022)

Image defogging algorithm based on improved dark channel and adaptive tolerance

Hui-juan ZHONG1,2、* and Yi-peng LIAO3
Author Affiliations
  • 1School of Network and Communications,Hebei Polytechnic Institute,Shijiazhuang 050091,China
  • 2College ofartificial intelligence,Yango University,Fuzhou 350015,China
  • 3College of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China
  • show less
    Figures & Tables(12)
    Transmittance estimation under different filter windows
    Transmittance maps before and after guided filtering
    Transmittance estimation for different algorithms
    Defogged images with different algorithms
    Defogged images in different scenes
    Defogged images of different algorithms in scenes with a large number of sky
    • Table 1. Objective evaluation for Fig.5(1)

      View table
      View in Article

      Table 1. Objective evaluation for Fig.5(1)

      去雾算法信息熵/bitPSNR/dB平均梯度SSIM处理时间/s
      文献[97.394 913.928 310.441 40.774 63.171 9
      文献[117.389 214.296 610.503 70.866 03.734 4
      算法17.425 417.603 19.983 20.888 313
      本文算法7.599 621.907 510.984 10.867 87.484 4
    • Table 2. Objective evaluation for Fig.5(2)

      View table
      View in Article

      Table 2. Objective evaluation for Fig.5(2)

      去雾算法信息熵/bitPSNR/dB平均梯度SSIM处理时间/s
      文献[97.310 117.303 57.010 40.885 01.890 6
      文献[117.268 018.500 67.341 80.942 12.421 9
      算法17.329 519.702 16.972 90.945 06.375 0
      本文算法7.554 825.479 67.768 50.979 06.031 3
    • Table 3. Objective evaluation for Fig.5(3)

      View table
      View in Article

      Table 3. Objective evaluation for Fig.5(3)

      去雾算法信息熵/bitPSNR/dB平均梯度SSIM处理时间/s
      文献[97.221 819.591 511.461 40.861 01.562 5
      文献[117.584 519.842 012.425 00.895 91.765 6
      算法17.589 520.128 111.359 00.896 75.421 9
      本文算法7.597 022.442 212.410 20.874 63.859 4
    • Table 4. Objective evaluation for Fig.5(4)

      View table
      View in Article

      Table 4. Objective evaluation for Fig.5(4)

      去雾算法信息熵/bitPSNR/dB平均梯度SSIM处理时间/s
      文献[97.532 714.046 74.489 20.841 31.859 4
      文献[117.380 514.215 02.623 30.883 83.625 0
      算法17.393 414.853 42.528 20.893 65.421 9
      本文算法7.518 417.740 94.144 50.944 44.343 8
    • Table 5. Objective evaluation for Fig.6(1)

      View table
      View in Article

      Table 5. Objective evaluation for Fig.6(1)

      去雾算法信息熵/bitPSNR/dB平均梯度SSIM处理时间/s
      文献[97.567 520.451 12.680 90.938 12.125 0
      文献[117.108 820.635 91.815 90.957 73.093 8
      算法17.536 321.206 81.787 80.959 46.203 1
      本文算法7.586 622.882 72.558 70.975 74.765 6
    • Table 6. Objective evaluation for Fig.6(2)

      View table
      View in Article

      Table 6. Objective evaluation for Fig.6(2)

      去雾算法信息熵/bitPSNR/dB平均梯度SSIM处理时间/s
      文献[97.377 815.017 93.789 70.829 41.375 0
      文献[117.318 915.272 42.160 40.902 21.562 5
      算法17.263 715.567 52.143 60.933 23.731 3
      本文算法7.325 418.750 53.690 70.971 93.534 4
    Tools

    Get Citation

    Copy Citation Text

    Hui-juan ZHONG, Yi-peng LIAO. Image defogging algorithm based on improved dark channel and adaptive tolerance[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(11): 1488

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 21, 2022

    Accepted: --

    Published Online: Nov. 3, 2022

    The Author Email: Hui-juan ZHONG (872021753@qq.com)

    DOI:10.37188/CJLCD.2022-0140

    Topics