Optics and Precision Engineering, Volume. 32, Issue 23, 3490(2024)

Single target tracking in complex scenarios

Huilan LIN1, Chunlei ZHAO1、*, Zhicheng HAO1, Shi LIU1, Ming ZHU1, Xin JIANG1, Wen GAO2, and Junqiang ZHANG1
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun30000, China
  • 2BYD Auto Industry Company Limited, Shenzhen518000, China
  • show less
    References(33)

    [1] 赵恩喆. 基于光流法与目标跟踪网络结合的视频行人跟踪研究[D](2022).

         ZHAO E ZH. Research on Video Pedestrian Tracking Based on Optical Flow Method and Target Tracking Network[D](2022).

    [2] XU M, LU W, FANG CH et al. Target tracking algorithm combining optical flow features and saliency detection[J]. Computer Applications and Software, 41, 164-171, 187(2024).

         徐萌, 路稳, 方澄. 融合光流特征和显著性检测的目标跟踪算法[J]. 计算机应用与软件, 41, 164-171, 187(2024).

    [3] ZHANG H Y, HE P Y, PENG X W. Multi-object pedestrian tracking method based on improved high resolution neural network[J]. Opt. Precision Eng., 31, 860-871(2023).

         张红颖, 贺鹏艺, 彭晓雯. 基于改进高分辨率神经网络的多目标行人跟踪[J]. 光学 精密工程, 31, 860-871(2023).

    [4] TERADA K. A general framework for Multi-Human tracking using Kalman filter and fast mean shift algorithms[J]. J. Univers. Comput. Sci., 16, 921-937(2010).

    [5] VOJIR T, NOSKOVA J, MATAS J. Robust scale-adaptive mean-shift for tracking[J]. Pattern Recognition Letters, 49, 250-258(2014).

    [6] 胡亮, 杨德贵, 王行. 基于改进MEANSHIFT的可见光低小慢目标跟踪算法[J]. 信号处理, 38, 824-834(2022).

         HU L, YANG D G, WANG X et al. Visible light low-small-slow-target tracking algorithm based on improved MEANSHIFT[J]. Journal of Signal Processing, 38, 824-834(2022).

    [7] BOLME D S, BEVERIDGE J R, DRAPER B A et al. Visual object tracking using adaptive correlation filters[C], 2544-2550(2010).

    [8] HENRIQUES J F, CASEIRO R, MARTINS P et al. Exploiting the circulant structure of tracking-by-detection with kernels[C], 702-715(2012).

    [9] DONG CH, ZHENG B, LI B et al. Shiptarget tracking with improved kernelized correlation filters[J]. Opt. Precision Eng., 27, 911-921(2019).

         董超, 郑兵, 李彬. 改进核相关滤波器的海上船只目标跟踪[J]. 光学 精密工程, 27, 911-921(2019).

    [10] HENRIQUES J F, CASEIRO R, MARTINS P et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 583-596(2015).

    [11] LI Y, ZHU J K[M]. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration, 254-265(2015).

    [12] DANELLJAN M, HAGER G, KHAN F S et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1561-1575(2017).

    [13] BERTINETTO L, VALMADRE J, GOLODETZ S et al. Staple: complementary learners for real-time tracking[C], 1401-1409(2016).

    [14] ZHANG J, MA S, SCLAROFF S. MEEM: robust tracking via multiple experts using entropy minimization[C]. Zurich(2014).

    [15] HARE S, GOLODETZ S, SAFFARI A et al. Struck: structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2096-2109(2016).

    [16] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 1409-1422(2012).

    [17] GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C], 1144-1152(2017).

    [18] VALMADRE J, BERTINETTO L, HENRIQUES J et al. End-to-end representation learning for correlation filter based tracking[C], 5000-5008(2017).

    [19] BERTINETTO L, VALMADRE J, HENRIQUES J F et al. Fully-convolutional siamese networks for object tracking[C], F(2016).

    [20] YANG K, ZHANG H J, SHI J Y et al. BANDT: a border-aware network with deformable transformers for visual tracking[J]. IEEE Transactions on Consumer Electronics, 69, 377-390(2023).

    [21] LIN L T, FAN H, XU Y et al. SwinTrack: a simple and strong baseline for transformer tracking[J]. Advances in Neural Information Processing Systems, 35, 16743-16754(2022).

    [22] CETINTAS O, BRASÓ G, LEAL-TAIXÉ L. Unifying short and long-term tracking with graph hierarchies[C], 22877-22887(2023).

    [23] MAGGIOLINO G, AHMAD A, CAO J K et al. Deep OC-sort: multi-pedestrian tracking by adaptive re-identification[C], 3025-3029(2023).

    [24] DU Y H, ZHAO Z C, SONG Y et al. StrongSORT: make DeepSORT great again[J]. IEEE Transactions on Multimedia, 25, 8725-8737(1809).

    [25] KIM V, JUNG G, LEE S W. AM-SORT: adaptable motion predictor with historical trajectory embedding for multi-object tracking[J]. arXiv preprint(2024).

    [26] WU Y, YANG M H. Online object tracking: a benchmark[C], 2411-2418(2013).

    [27] HUA G, JÉGOU H. Computer Vision-ECCV 2016 Workshops Amsterdam The Netherlands October 8-10[M]. 16(15).

    [28] CHENG S Y, ZHONG B N, LI G R et al. Learning to filter: Siamese relation network for robust tracking[C], 4419-4429(2021).

    Tools

    Get Citation

    Copy Citation Text

    Huilan LIN, Chunlei ZHAO, Zhicheng HAO, Shi LIU, Ming ZHU, Xin JIANG, Wen GAO, Junqiang ZHANG. Single target tracking in complex scenarios[J]. Optics and Precision Engineering, 2024, 32(23): 3490

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 24, 2024

    Accepted: --

    Published Online: Mar. 10, 2025

    The Author Email: Chunlei ZHAO (zhaochunlei@ciomp.ac.cn)

    DOI:10.37188/OPE.20243223.3490

    Topics