Journal of Innovative Optical Health Sciences, Volume. 18, Issue 2, 2450025(2025)

Enhancing the data processing speed of a deep-learning-based three-dimensional single molecule localization algorithm (FD-DeepLoc) with a combination of feature compression and pipeline programming

Shuhao Guo, Jiaxun Lin, Yingjun Zhang*, and Zhen-Li Huang
Author Affiliations
  • Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, P. R. China
  • show less
    References(25)

    [1] M. Lelek, M. T. Gyparaki, G. Beliu et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers, 1, 39(2021).

    [2] Y. M. Sigal, R. Zhou, X. W. Zhuang. Visualizing and discovering cellular structures with super-resolution microscopy. Science, 361, 880-887(2018).

    [3] J. Basumatary, N. Baro, F. C. Zanacchi et al. Temporally resolved SMLM (with large PAR shift) enabled visualization of dynamic HA cluster formation and migration in a live cell. Sci. Rep., 13, 12561(2023).

    [4] S. Adhikari, J. Moscatelli, E. M. Smith et al. Single-molecule localization microscopy and tracking with red-shifted states of conventional BODIPY conjugates in living cells. Nat. Commun., 10, 3400(2019).

    [5] D. Dong, X. Huang, L. Li et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci. Appl., 9, 11(2020).

    [6] J. Basumatary, N. Baro, P. Joshi et al. Scanning single molecule localization microscopy (scanSMLM) for super-resolution volume imaging. Commun. Biol., 6, 1050(2023).

    [7] H. Kemmoku, K. Takahashi, K. Mukai et al. Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol. Nat. Commun., 15, 220(2024).

    [8] W. Ouyang, A. Aristov, M. Lelek et al. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol., 36, 460-468(2018).

    [9] J. Liao, J. Qu, Y. Hao et al. Deep-learning-based methods for super-resolution fluorescence microscopy. J. Innov. Opt. Health Sci., 16, 2230016(2022).

    [10] C. Werner, M. Sauer, C. Geis. Super-resolving microscopy in neuroscience. Chem. Rev., 121, 11971-12015(2021).

    [11] Q. Song, C. Wu, J. Huang et al. DecodeSTORM: A user-friendly ImageJ plug-in for quantitative data analysis in single-molecule localization microscopy. J. Innov. Opt. Health Sci., 16, 2350006(2023).

    [12] M. E. Siemons, L. C. Kapitein, S. Stallinga. Axial accuracy in localization microscopy with 3D point spread function engineering. Opt. Express, 30, 28290-28300(2022).

    [13] R. Heintzmann, M. G. J. N. P. Gustafsson. Subdiffraction resolution in continuous samples, 3, 362-364(2009).

    [14] L. Holtzer, T. Meckel, T. Schmidt. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett., 90, 053902(2007).

    [15] L. Möckl, A. R. Roy, W. E. Moerner. Deep learning in single-molecule microscopy: Fundamentals, caveats, and recent developments [Invited]. Biomed. Opt. Express, 11, 1633-1661(2020).

    [16] H. Babcock, Y. M. Sigal, X. W. Zhuang. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt. Nanoscopy, 1, 6(2012).

    [17] H. P. Babcock, X. W. Zhuang. Analyzing single molecule localization microscopy data using cubic splines. Sci. Rep., 7, 552(2017).

    [18] Y. Hyun, D. Kim. Development of deep-learning-based single-molecule localization image analysis. Int. J. Mol. Sci., 23, 6896(2022).

    [19] A. Speiser, L.-R. Müller, P. Hoess et al. Deep learning enables fast and dense single-molecule localization with high accuracy. Nat. Methods, 18, 1082-1090(2021).

    [20] S. Fu, W. Shi, T. Luo et al. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging. Nat. Methods, 20, 459-468(2023).

    [21] Z. W. Zhou, J. N. Wu, Z. X. Wang et al. Deep learning using a residual deconvolutional network enables real-time high-density single-molecule localization microscopy. Biomed. Opt. Express, 14, 1833-1847(2023).

    [22] L. Maurice, A. Bilenca. Three-dimensional single particle tracking using 4π self-interference of temporally phase-shifted fluorescence. Light: Sci. Appl., 12, 58(2023).

    [23] X. Li, Y. Li, Y. Zhou et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat. Biotechnol., 41, 282-292(2023).

    [24] D. Gui, Y. J. Chen, W. B. Kuang et al. Accelerating multi-emitter localization in super-resolution localization microscopy with FPGA-GPU cooperative computation. Opt. Express, 29, 35247-35260(2021).

    [25] J. V. Thevathasan, M. Kahnwald, K. Cieśliński et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods, 16, 1045-1053(2019).

    Tools

    Get Citation

    Copy Citation Text

    Shuhao Guo, Jiaxun Lin, Yingjun Zhang, Zhen-Li Huang. Enhancing the data processing speed of a deep-learning-based three-dimensional single molecule localization algorithm (FD-DeepLoc) with a combination of feature compression and pipeline programming[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2450025

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 12, 2024

    Accepted: Sep. 1, 2024

    Published Online: Apr. 7, 2025

    The Author Email: Yingjun Zhang (yjzhang@hainanu.edu.cn)

    DOI:10.1142/S1793545824500251

    Topics