Chinese Journal of Lasers, Volume. 47, Issue 10, 1002008(2020)
Microstructures and Fatigue Properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V Titanium Alloy Fabricated Using Laser Deposition Manufacturing
[3] Zhang M. Research on laser additive manufacturing characteristics of titanium alloy with powder and wire[D]. Harbin: Harbin Institute of Technology, 15-18(2013).
[5] He Y, Qu X H, Wang Y et al[J]. The development and application of overview of titanium alloy Equipment Manufacturing Technology, 2014, 160-161.
[7] He R J, Wang H M. Microstructure features of laser deposited Ti-6Al-2Zr-Mo-V alloy[J]. Journal of Aeronautical Materials, 29, 18-22(2009).
[8] Sterling A J, Torries B, Shamsaei N et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J]. Materials Science and Engineering A, 655, 100-112(2016).
[9] Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering A, 598, 327-337(2014).
[10] Razavi S M J, Ferro P, Berto F et al. Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V[J]. Theoretical and Applied Fracture Mechanics, 97, 376-384(2018).
[14] Wang H G, Leng W C, Li S X et al. Effects of heat treatment process on microstructure and mechanical properties of TC4 alloy[J]. Hot Working Technology, 40, 181-183(2011).
[15] Feng L, Zhao Y Q, Qu H L et al. Microstructure and property of Ti-6-22-22S alloy dimension bar[J]. Journal of Materials Engineering, 31, 10-12(2003).
[16] Wei X, Mao X N, Hou Z M. Study on heat treatment process of Ti-62222s alloy[J]. Hot Working Technology, 43, 205-208(2014).
[17] Wang H M, Zhang S Q, Tang H B et al. Research progress on laser rapid prototyping of large titanium alloy structures[J]. Aviation Precision Manufacturing Technology, 44, 28-30(2008).
[18] Liu F C, Lin X, Huang C P et al. The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. Journal of Alloys and Compounds, 509, 4505-4509(2011).
[19] Zhu Y Y, Tian X J, Li J et al. Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Journal of Alloys and Compounds, 616, 468-474(2014).
[20] Ren H S, Tian X J, Liu D et al. Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 25, 1856-1864(2015).
[21] Huang X, Cuddy J, Goel N et al. Effect of heat treatment on the microstructure of a metastable β-titanium alloy[J]. Journal of Materials Engineering and Performance, 3, 560-566(1994).
[22] Ren Y M, Lin X, Huang W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 46, 3160-3168(2017).
[24] Tao C H[M]. Failure and prevention of aeronautical titanium alloy(2013).
[25] Wang Q Y. Accelerated fatigue testing by ultrasonic loading[J]. Journal of Sichuan University (Engineering Science Edition), 34, 6-11(2002).
Get Citation
Copy Citation Text
Qin Lanyun, Wu Jiabao, Wang Wei, Wang Chao, Li Changfu, Yang Guang. Microstructures and Fatigue Properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V Titanium Alloy Fabricated Using Laser Deposition Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(10): 1002008
Category: laser manufacturing
Received: May. 6, 2020
Accepted: --
Published Online: Oct. 9, 2020
The Author Email: Guang Yang (yangguang@sau.edu.cn)