Journal of Quantum Optics, Volume. 30, Issue 2, 20304(2024)
The Time-domain Balanced Homodyne Detector with Clock Recovery and Power Monitoring Functions
[1] [1] YUEN H P, CHAN V W S. Noise in homodyne and heterodyne detection[J]. Optics Letters, 1983, 8(3):177‒179. DOI: 10.1364/OL.8.000177.
[2] [2] BRAUNSTEIN S L, LOOCK P V. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2):513‒577. DOI: 10.1103/RevModPhys.77.513.
[3] [3] SLUSHER R E, HOLLBERG L W, YURKE B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Physical Review Letters, 1985, 55(22):2409‒2412. DOI: 10.1103/PhysRevLett.55.2409.
[4] [4] WU L A, KIMBLE H J, HALL J L, et al. Generation of squeezed states by parametric down conversion[J]. Physical Review Letters, 1986, 57(20):2520‒2523. DOI: 10.1103/PhysRevLett.57.2520.
[5] [5] VAHLBRUCH H, MEHMET M, CHELKOWSKI S, et al. Observation of squeezed light with 10 dB quantum-noise reduction[J]. Physical Review Letters, 2008, 100(3):033602. DOI: 10.1103/PhysRevLett.100.033602.
[6] [6] VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11):110801. DOI: 10.1103/PhysRevLett.117.110801.
[7] [7] ANDERSEN U L, GEHRING T, MARQUARDT C, et al. 30 years of squeezed light generation[J]. Physica Scripta, 2016, 91(5):053001. DOI: 10.1088/0031-8949/91/5/053001.
[8] [8] YANG W H, SHI S P, WANG Y J, et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations[J]. Optics Letters, 2017, 42(21):4553‒4556. DOI: 10.1364/OL.42.004553.
[9] [9] SHI S P, WANG Y J, YANG W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Optics Letters, 2018, 43(21):5411‒5414. DOI: 10.1364/OL.43.005411.
[10] [10] SHI S P, TIAN L, WANG Y J, et al. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes[J]. Physical Review Letters, 2020, 125(7):070502. DOI: 10.1103/PhysRevLett.125.070502.
[11] [11] ZHANG W H, JIAO N J, LI R X, et al. Precise control of squeezing angle to generate 11 dB entangled state[J]. Optics Express, 2021, 29(15):24315‒24325. DOI: 10.1364/OE.428501.
[12] [12] OU Z Y, PEREIRA S F, KIMBLE H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables Phys[J]. Physical Review Letters, 1992, 68(25):3663‒3666. DOI: 10.1103/PhysRevLett.68.3663.
[13] [13] BRAUNSTEIN S L, KIMBLE H J. Teleportation of continuous quantum variables[J]. Physical Review Letters, 1998, 80(4):869‒872. DOI: 10.1103/PhysRevLett.80.869.
[14] [14] FURUSAWA A, SORENSEN J L, BRAUNSTEIN S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389):706‒709. DOI: 10.1126/science.282.5389.706.
[15] [15] HUO M R, QIN J L, CHENG J L, et al. Deterministic quantum teleportation through fiber channels[J]. Science Advances, 2018, 4(10):eaas9401. DOI: 10.1126/Sciadv.aas9401.
[16] [16] KOGIAS I, LEE A R, RAGY S, et al. Quantification of Gaussian quantum steering[J]. Physical Review Letters, 2015, 114(6):060403. DOI: 10.1103/PhysRevLett.114.060403.
[17] [17] UOLA R, COSTA A C S, NGUYEN H C, et al. Quantum steering[J]. Reviews of Modern Physics, 2020, 92(1):015001. DOI: 10.1103/RevModPhys.92.015001.
[18] [18] LIU Y, ZHENG K M, KANG H J, et al. Distillation of Gaussian Einstein-Podolsky-Rosen steering with noiseless linear amplification[J]. npj Quantum Information, 2022, 8:38. DOI: 10.1038/s41534-022-00549-9.
[19] [19] GABRIEL C, WITTMANN C, SYCH D, et al. A generator for unique quantum random numbers based on vacuum states[J]. Nature Photonics, 2010, 4:711‒715. DOI: 10.1038/nphoton.2010.197
[20] [20] SHEN Y, TIAN L, ZOU H. Practical quantum random number generator based on measuring the shot noise of vacuum states[J]. Physical Review A, 2010, 81(6):063814. DOI: 10.1103/PhysRevA.81.063814.
[21] [21] SYMUL T, ASSAD S, LAM P K. Real time demonstration of high bitrate quantum random number generation with coherent laser light[J]. Applied Physics Letters, 2011, 98:231103. DOI: 10.1163/1.3597793.
[22] [22] MA X F, YUAN X, CAO Z, et al. Quantum random number generation[J]. npj Quantum Information, 2016, 2:16021. DOI: 10.1038/npjqi.2016.21.
[23] [23] LU Z G, LIU J Q, WANG X Y, et al. Quantum random number generator with discarding-boundary-bin measurement and multi-interval sampling[J]. Optics Express, 2021, 29(8):12440‒12453. DOI: 10.1364/OE.419756.
[24] [24] LVOVSKY A I, RAYMER M G. Continuous-variable optical quantum-state tomography[J]. Reviews of Modern Physics, 2009, 81(1):299‒332. DOI: 10.1103/RevModPhys.81.299.
[25] [25] CERF N J, LEVY M, ASSCHE G V. Quantum distribution of Gaussian keys using squeezed states[J]. Physical Review A, 2001, 63(5):052311. DOI: 10.1103/PhysRevA.63.052311.
[26] [26] LANCE A M, SYMUL T, SHARMA V, et al. No-switching quantum key distribution using broadband modulated coherent light[J]. Physical Review Letters, 2005, 95(18):180503. DOI: 10.1103/PhysRevLett.95.180503.
[27] [27] WEEDBROOK C, PIRANDOLA S, GARCA-PATRN N, et al. Gaussian quantum information[J]. Reviews of Modern Physics, 2012, 84(2):621‒669. DOI: 10.1103/RevModPhys.84.621.
[28] [28] SMITHEY D T, BECK M, RAYMER M G, et al. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum[J]. Physical Review Letters, 1993, 70(9):1244‒1247. DOI: 10.1103/PhysRevLett.70.1244.
[29] [29] BREITENBACH G, SCHILLER S, MLYNEK J. Measurement of the quantum states of squeezed light[J]. Nature, 1997, 387:471‒475. DOI: 10.1038/387471a0.
[30] [30] VASILYEV M, CHOI S K, KUMAR P, et al. Tomographic measurement of joint photon statistics of the twin-beam quantum state[J]. Physical Review Letters, 2000, 84(11):2354‒2357. DOI: 10.1103/PhysRevLett.84.2354.
[31] [31] GROSSHANS F, GRANGIER P. Continuous variable quantum cryptography using coherent states[J]. Physical Review Letters, 2002, 88(5):057902. DOI: 10.1103/PhysRevLett.88.057902.
[32] [32] SILBERHORN C, RALPH T C, LUTKENHAUS N, et al. Continuous variable quantum cryptography: beating the 3 dB loss limit[J]. Physical Review Letters, 1986, 89(16):167901. DOI: 10.1103/PhysRevLett.89.167901.
[33] [33] GROSSHANS F, WENGER J, TUALLE-BROURI R, et al. Quantum key distribution using Gaussian-modulated coherent states[J]. Nature, 2003, 421:238‒241 DOI: 10.1038/nature01289.
[34] [34] LODEWYCK J, BLOCH M, GARCA-PATRN R, et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system[J]. Physical Review A, 2007, 76(4):042305.
[35] [35] JOUGUET P, KUNZ-JACQUES S, LEVERRIER A, et al. Experimental demonstration of long-distance continuous-variable quantum key distribution[J]. Nature Photonics, 2013, 7:378‒381. DOI: 10.1038/nphoton.2013.63.
[36] [36] HUANG D, LIN D, WANG C, et al. Continuous-variable quantum key distribution with 1 Mbps secure key rate[J]. Optics Express, 2015, 23(13):17511‒17519. DOI: 10.1364/OE.23.017511.
[37] [37] HUANG D, HUANG P, LIN D K, et al. High-speed continuous-variable quantum key distribution without sending a local oscillator[J]. Optics Letters, 2015, 40(16):3695‒3698. DOI: 10.1364/OL.40.003695.
[38] [38] WANG X Y, LIU W Y, WANG P, et al. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution[J]. Physical Review A, 2017, 95(6):062330. DOI: 10.1103/PhysRevA.95.062330.
[39] [39] ZHANG Y C, CHEN Z Y, PIRANDOLA S, et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber[J]. Physical Review Letters, 2020, 125(1):010502. DOI: 10.1103/PhysRevLett.125.010502.
[40] [40] TIAN Y, WANG P, LIU J Q, et al. Experimental demonstration of continuous variable measurement device independent quantum key distribution over optical fiber[J]. Optica, 2022, 9(5):492‒500. DOI: 10.1364/OPTICA.450573.
[45] [45] HANSEN H, AICHELE T, HETTICH C, et al. Ultrasensitive pulsed, balanced homodyne detector: application to timedomain quantum measurements[J]. Optics Letters, 2001, 26(21):1714‒1716. DOI: 10.1364/OL.26.001714.
[46] [46] WANG X Y, BAI Z L, DU P Y, et al. Ultrastable fiber-based time-domain balanced homodyne detector for quantum communication[J]. Chinese Physics Letters, 2012, 29:124202. DOI: 10.1088/0256-307X/29/12/124202.
[47] [47] DU S N, LI Z Y, LIU W Y, et al. High-speed time-domain balanced homodyne detector for nanosecond optical field applications[J]. Journal of the Optical Society of America B, 2018, 35(2):481‒486. DOI: 10.1364/JOSAB.35.000481.
Get Citation
Copy Citation Text
GUO Xu-bo, WANG Xu-yang, JIA Yan-xiang, ZHANG Yu, HOU Yi-zhuo, LI yong-min. The Time-domain Balanced Homodyne Detector with Clock Recovery and Power Monitoring Functions[J]. Journal of Quantum Optics, 2024, 30(2): 20304
Category:
Received: Jan. 13, 2023
Accepted: Dec. 26, 2024
Published Online: Dec. 25, 2024
The Author Email: WANG Xu-yang (wangxuyang@sxu.edu.cn)