Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 6, 746(2022)

Cycle generative adversarial network guided by dual special attention mechanism

Jun-ming LAO1, Wu-jian YE2、*, Yi-jun LIU2, and Kai-yi YUAN1
Author Affiliations
  • 1College of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2College of Integrated Circuit,Guangdong University of Technology,Guangzhou 510006,China
  • show less
    Figures & Tables(18)
    Performance of different models on the horse to zebra task.(a)Origin image;(b)CycleGAN;(c)UNIT;(d)MUNIT;(e)DRIT;(f)Ours.
    Network diagram
    Overall framework
    Structure of generator G based on special attention mechanism-guide
    Structure of discriminator based on special attention mechanism-guide
    Effect of the generated image’‍s quality that with or without our generator,discriminator and cycle consistency loss function background mask.(a)Original image;(b)Generator without special attention-mechanism guided;(c)Discriminator without special attention-mechanism guided;(d)Without cycle consistency loss function of background mask;(e)All of three factors.
    Effect of different λ-factors on the quality of the generated images on the horse-to-zebra task
    Attention mask and images generated by ours model on the apple to orange and orange to apple tasks
    Attention mask and images generated by ours model on the horse to zebra and zebra to horse tasks
    Performance of different models on the horse-zebra interchange task.(a)Original image;(b)CycleGAN;(c)RA;(d)DiscoGAN;(e)UNIT;(f)DualGAN;(g)UAIT;(h)AttentionGAN;(i)Ours.
    Performance of different models on the selfie-anime interchange task.(a)Original image;(b)CycleGAN;(c)UNIT;(d)MUNIT;(e)DRIT;(f)U-GAT-IT;(g)AttentionGAN;(h)Ours.
    • Table 1. Details of each dataset

      View table
      View in Article

      Table 1. Details of each dataset

      数据集训练集/张测试集/张总计/张
      Horse2Zerba122 0412602 661
      Apple2Orange122 0165142 530
      Selfie2Anime176 8002007 000
    • Table 2. Ablation studies of models on the horse-to-zebra task

      View table
      View in Article

      Table 2. Ablation studies of models on the horse-to-zebra task

      设置无注意力引导生成器无注意力引导鉴别器无背景掩码循环一致性损失三者都有
      FID107.2392.2486.0557.54
    • Table 3. Effect of different λ‍-coefficients on the quality of the generated images

      View table
      View in Article

      Table 3. Effect of different λ‍-coefficients on the quality of the generated images

      设置FID
      λ=0.086.05
      λ=1.0 (本文)57.54
      λ=10.079.58
    • Table 4. KID×100±std. ×100 metrics for different models on different tasks

      View table
      View in Article

      Table 4. KID×100±std. ×100 metrics for different models on different tasks

      模型苹果转橘子橘子转苹果马转斑马斑马转马
      DiscoGAN818.34±0.7521.56±0.8013.68±0.7516.60±0.50
      RA1912.75±0.4913.84±0.7810.16±0.1210.97±0.26
      DualGAN713.04±0.7212.42±0.8810.38±0.3112.86±0.50
      UNIT911.68±0.4311.76±0.5111.22±0.2413.63±0.34
      CycleGAN128.48±0.539.82±0.5110.25±0.2511.44±0.38
      UAIT136.44±0.695.32±0.486.93±0.278.87±0.26
      AttentionGAN1610.03±0.664.38±0.422.03±0.646.48±0.51
      Ours7.28±0.713.02±0.291.13±0.235.06±0.60
    • Table 5. ‍KID×100±std.×100 metrics for different models on selfie to anime task

      View table
      View in Article

      Table 5. ‍KID×100±std.×100 metrics for different models on selfie to anime task

      模型自拍转动漫
      CycleGAN1213.08±0.49
      UNIT914.71±0.59
      MUNIT1013.85±0.41
      DRIT1115.08±0.62
      U-GAT-IT1711.61±0.57
      AttentionGAN1612.14±0.43
      Ours10.01±0.29
    • Table 6. FID metrics for different models on horse to zebra task

      View table
      View in Article

      Table 6. FID metrics for different models on horse to zebra task

      模型马转斑马
      UNIT9241.13
      CycleGAN12109.36
      DA-GAN20103.42
      TransGaGa2195.81
      SAT1598.90
      AttentionGAN1668.55
      Ours57.54
    • Table 7. Complexity analysis of different models guided by attention mechanism

      View table
      View in Article

      Table 7. Complexity analysis of different models guided by attention mechanism

      模型参数量/M浮点运算量/G乘法累加运算量/G训练时间(100张)/s占用显存(1批量)/MiB
      X.‍ Chen1443.94102.01204.02555 069
      T. Hao1629.2274.67 G149.31475 463
      Ours29.4965.50131.00363 669
    Tools

    Get Citation

    Copy Citation Text

    Jun-ming LAO, Wu-jian YE, Yi-jun LIU, Kai-yi YUAN. Cycle generative adversarial network guided by dual special attention mechanism[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(6): 746

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 24, 2021

    Accepted: --

    Published Online: Jun. 22, 2022

    The Author Email: Wu-jian YE (yewjian@126.com)

    DOI:10.37188/CJLCD.2021-0293

    Topics