Acta Optica Sinica, Volume. 43, Issue 8, 0822018(2023)
Design of Geostationary Full-Spectrum Wide-Swath High-Fidelity Imaging Spectrometer and Development of Its Spectrometers
[1] Vane G, Goetz A F H, Wellman J B. Airborne imaging spectrometer: a new tool for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, GE-22, 546-549(1984).
[2] Green R O, Eastwood M L, Sarture C M et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 65, 227-248(1998).
[3] Lucey P G, Horton K A, Williams T J et al. SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer[J]. Proceedings of SPIE, 1937, 130-141(1993).
[4] Hall J L, Boucher R H, Buckland K N et al. MAGI: a new high-performance airborne thermal-infrared imaging spectrometer for earth science applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 5447-5457(2015).
[5] Warren D W, Boucher R H, Gutierrez D J et al. MAKO: a high-performance, airborne imaging spectrometer for the long-wave infrared[J]. Proceedings of SPIE, 7812, 78120N(2010).
[6] Mouroulis P, Van Gorp B, Green R O et al. Portable remote imaging spectrometer coastal ocean sensor: design, characteristics, and first flight results[J]. Applied Optics, 53, 1363-1380(2014).
[7] Pearlman J, Carman S, Segal C et al. Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission[C], 3036-3038(2001).
[8] Rast M, Bezy J L, Bruzzi S. The ESA medium resolution imaging spectrometer MERIS a review of the instrument and its mission[J]. International Journal of Remote Sensing, 20, 1681-1702(1999).
[9] Nieke J, Borde F, Mavrocordatos C et al. The Ocean and Land Colour Imager (OLCI) for the Sentinel 3 GMES mission: status and first test results[J]. Proceedings of SPIE, 8528, 85280C(2012).
[10] Lucke R L, Corson M, McGlothlin N R et al. Hyperspectral Imager for the coastal ocean: instrument description and first images[J]. Applied Optics, 50, 1501-1516(2011).
[11] Pan Q, Chen X H, Zhou J K et al. Manufacture of the compact conical diffraction Offner hyperspectral imaging spectrometer[J]. Applied Optics, 58, 7298-7304(2019).
[12] Guanter L, Kaufmann H, Segl K et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation[J]. Remote Sensing, 7, 8830-8857(2015).
[13] Liu Y N, Sun D X, Hu X N et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing, 24, 333-344(2020).
[14] Peschel T, Beier M, Damm C et al. Integration and testing of an imaging spectrometer for earth observation[J]. Proceedings of SPIE, 11180, 111800O(2019).
[15] Mouroulis P, Green R O, Van Gorp B et al. Landsat swath imaging spectrometer design[J]. Optical Engineering, 55, 015104(2016).
[16] Cogliati S, Sarti F, Chiarantini L et al. The PRISMA imaging spectroscopy mission: overview and first performance analysis[J]. Remote Sensing of Environment, 262, 112499(2021).
[17] Lockwood R B, Cooley T W, Nadile R M et al. Advanced responsive tactically effective military imaging spectrometer (ARTEMIS): system overview and objectives[J]. Proceedings of SPIE, 6661, 666102(2007).
[18] Zeng C B, Han Y, Liu B et al. Optical design of a high-resolution spectrometer with a wide field of view[J]. Optics and Lasers in Engineering, 140, 106547(2021).
[19] Dwight J G, Tkaczyk T S, Alexander D et al. Compact snapshot image mapping spectrometer for unmanned aerial vehicle hyperspectral imaging[J]. Journal of Applied Remote Sensing, 12, 044004(2018).
[20] Mu T K, Han F, Li H et al. Snapshot hyperspectral imaging polarimetry with full spectropolarimetric resolution[J]. Optics and Lasers in Engineering, 148, 106767(2022).
[21] Bourdarot G, Le Coarer E, Bonfils X et al. NanoVipa: a miniaturized high-resolution echelle spectrometer, for the monitoring of young stars from a 6U cubesat[J]. CEAS Space Journal, 9, 411-419(2017).
[22] Zhu J C, Shen W M. Analytical design of athermal ultra-compact concentric catadioptric imaging spectrometer[J]. Optics Express, 27, 31094-31109(2019).
[23] Chrisp M P, Lockwood R B, Smith M A et al. Development of a compact imaging spectrometer form for the solar reflective spectral region[J]. Applied Optics, 59, 10007-10017(2020).
[24] Cook L G, Silny J F. Imaging spectrometer trade studies: a detailed comparison of the Offner-Chrisp and reflective triplet optical design forms[J]. Proceedings of SPIE, 7813, 78130F(2010).
[25] Yuan L Y, He Z P, Lv G et al. Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer[J]. Optics Express, 25, 22440-22454(2017).
[26] Krimchansky A, Machi D, Cauffman S A et al. Next-generation geostationary operational environmental satellite (GOES-R series): a space segment overview[J]. Proceedings of SPIE, 5570, 155-164(2004).
[27] Zhang P, Guo Q, Chen B Y et al. The Chinese next-generation geostationary meteorological satellite FY-4 compared with the Japanese Himawari-8/9 satellites[J]. Advances in Meteorological Science and Technology, 6, 72-75(2016).
[28] Aminou D M A, Jacquet B, Pasternak F. Characteristics of the meteosat second generation (MSG) radiometer/imager: SEVIRI[J]. Proceedings of SPIE, 3221, 19-31(1997).
[29] Vaillon L, Schull U, Knigge T et al. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit[J]. Proceedings of SPIE, 10565, 105651V.
[30] Elwell J D, Cantwell G W, Scott D K et al. A geosynchronous imaging Fourier transform spectrometer (GIFTS) for hyperspectral atmospheric remote sensing: instrument overview and preliminary performance results[J]. Proceedings of SPIE, 6297, 62970S(2006).
[31] Tufillaro N, Davis C O, Valle T et al. Behavioral model and simulator for the multi-slit optimized spectrometer (MOS)[J]. Proceedings of SPIE, 8870, 88700E(2013).
[32] Butz A, Orphal J, Checa-Garcia R et al. Geostationary Emission Explorer for Europe (G3E): mission concept and initial performance assessment[J]. Atmospheric Measurement Techniques, 8, 4719-4734(2015).
[33] Choi W J, Moon K J, Yoon J et al. Introducing the geostationary environment monitoring spectrometer[J]. Journal of Applied Remote Sensing, 12, 044005(2018).
[34] Polonsky I N, O’Brien D M, Kumer J B et al. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations[J]. Atmospheric Measurement Techniques, 7, 959-981(2014).
[35] Gulde S T, Kolm M G, Smith D J et al. Sentinel 4: a geostationary imaging UVN spectrometer for air quality monitoring: status of design, performance and development[J]. Proceedings of SPIE, 10563, 1056341(2017).
[36] Zoogman P, Liu X, Suleiman R M et al. Tropospheric emissions: monitoring of pollution (TEMPO)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 17-39(2017).
[37] Zhang Y M[M]. Applied optics, 19(2015).
[38] Batshev V I, Puryaev D T. Geometrical and optical properties of an afocal two-mirror system[J]. Journal of Optical Technology, 76, 10-14(2009).
[39] Li Q, Han L, Jin Y M et al. Afocal three-mirror anastigmat with zigzag optical axis for widened field of view and enlarged aperture[J]. Proceedings of SPIE, 10021, 100211T(2016).
[40] Hu B, Huang Y, Li Y. Design of four-mirror afocal principal system for wide field multichannel infrared imaging[J]. Proceedings of SPIE, 9618, 96180D(2015).
[41] Mouroulis P Z, McKerns M M. Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration[J]. Optical Engineering, 39, 808-816(2000).
[42] Mouroulis P, Green R O. Review of high fidelity imaging spectrometer design for remote sensing[J]. Optical Engineering, 57, 040901(2018).
[43] Kwo D, Lawrence G, Chrisp M. Design of a grating spectrometer from a 1∶1 Offner mirror system[J]. Proceedings of SPIE, 0818, 275-281(1987).
[44] Prieto-Blanco X, Fuente R. Compact Offner-Wynne imaging spectrometers[J]. Optics Communications, 328, 143-150(2014).
[45] Zhu J C, Shen W M. Design and manufacture of compact long-slit spectrometer for hyperspectral remote sensing[J]. Optik, 247, 167896(2021).
[46] Reimers J, Bauer A, Thompson K P et al. Freeform spectrometer enabling increased compactness[J]. Light: Science & Applications, 6, e17026(2017).
[47] Zhu J C, Chen X H, Zhao Z C et al. Design and manufacture of miniaturized immersed imaging spectrometer for remote sensing[J]. Optics Express, 29, 22603-22613(2021).
[48] Montero-Orille C, Prieto-Blanco X, González-Núñez H et al. Design of Dyson imaging spectrometers based on the Rowland circle concept[J]. Applied Optics, 50, 6487-6494(2011).
[49] van Gorp B, Mouroulis P, Wilson D W et al. Design of the compact wide swath imaging spectrometer (CWIS)[J]. Proceedings of SPIE, 9222, 92220C(2014).
[50] Yu L. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype[J]. Optics Express, 25, 15526-15538(2017).
[51] Wu S, Huang C, Yu L et al. Optical design and evaluation of an advanced scanning Dyson imaging spectrometer for ocean color[J]. Optics Express, 29, 36616-36633(2021).
[52] Prieto-Blanco X, Montero-Orille C, Couce B et al. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 14, 9156-9168(2006).
[53] Tong Y J, Wu G, Zhou Q et al. Design method of Offner-type imaging spectrometer[J]. Acta Optica Sinica, 30, 1148-1152(2010).
[54] Zhu J C, Lu W Q, Zhao Z C et al. Spectroscopic imaging system in mid-wave infrared imaging spectrometer on geostationary orbit[J]. Acta Optica Sinica, 41, 1122001(2021).
[55] Zhu J C, Shen W M. Compact anastigmatic long-slit spectrometer[J]. Journal of Infrared and Millimeter Waves, 38, 542-548(2019).
[56] Zhu J C, Chen X H, Zhao Z C et al. Long-slit polarization-insensitive imaging spectrometer for wide-swath hyperspectral remote sensing from a geostationary orbit[J]. Optics Express, 29, 26851-26864(2021).
[57] Chen Y H, Ji Y Q, Zhou J K et al. Signal-to-noise ratio evaluation of airborne visible-infrared hyperspectral imaging spectrometer[J]. Infrared and Laser Engineering, 41, 2300-2303(2012).
[58] Zhu J C, Zhao Z C, Shen S et al. Analysis on NETD of thermal infrared imaging spectrometer[M]. Urbach H P, Yu Q F. 5th international symposium of space optical instruments and applications. Springer proceedings in physics, 232, 1-9(2020).
[59] Yang T T, Chen X H, Zhao Z C et al. Fast alignment of an Offner imaging spectrometer using a spherical autostigmatic method[J]. Chinese Optics, 13, 1324-1331(2020).
[60] Cobb J M, Comstock L E, Dewa P G et al. Innovative manufacturing and test technologies for imaging hyperspectral spectrometers[J]. Proceedings of SPIE, 6233, 62330R(2006).
[61] Beier M, Hartung J, Peschel T et al. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope[J]. Applied Optics, 54, 3530-3542(2015).
Get Citation
Copy Citation Text
Jiacheng Zhu, Zhicheng Zhao, Quan Liu, Xinhua Chen, Huan Li, Shaofan Tang, Weimin Shen. Design of Geostationary Full-Spectrum Wide-Swath High-Fidelity Imaging Spectrometer and Development of Its Spectrometers[J]. Acta Optica Sinica, 2023, 43(8): 0822018
Category: Optical Design and Fabrication
Received: Oct. 26, 2022
Accepted: Nov. 25, 2022
Published Online: Apr. 6, 2023
The Author Email: Liu Quan (liuquan@suda.edu.cn), Shen Weimin (swm@suda.edu.cn)