Journal of Quantum Optics, Volume. 30, Issue 1, 10502(2024)
Light-induced Dipole-dipole Interaction of Two Optically Levitated Nanoparticles in a Vacuum
[1] [1] CHANG D E, REGAL C A, PAPP S B, et al. Cavity opto-mechanics using an optically levitated nanosphere[J]. Proceedings of the National Academy, 2010, 107(3):1005-1010. DOI: 10.1073/pnas.0912969107.
[2] [2] DELI U, REISENBAUER M, DARE K, et al. Cooling of a levitated nanoparticle to the motional quantum ground state[J]. Science, 2020, 367(6480):892-895. DOI: 10.1126/science.aba3993.
[3] [3] TEBBENJOHANNS F, MATTANA M L, ROSSI M, et al. Quantum control of a nanoparticle optically levitated in cryogenic free space[J]. Nature, 2021, 595:378-382. DOI: 10.1038/s41586-021-03617-w.
[4] [4] MAGRINI L, ROSENZWEIG P, BACH C, et al. Real-time optimal quantum control of mechanical motion at room temperature[J]. Nature, 2021, 595(7867):373-377. DOI: 10.1038/s41586-021-03602-3.
[5] [5] HOANG T M, MA Y, AHN J, et al. Torsional optomechanics of a levitated nonspherical nanoparticle[J]. Physical Review Letters, 2016, 117(12):123604. DOI: 10.1103/PhysRevLett.117.123604.
[6] [6] REIMANN R, DODERER M, HEBESTREIT E, et al. GHz rotation of an optically trapped nanoparticle in vacuum[J]. Physical Review Letters, 2018, 121(3):033602. DOI: 10.1103/ PhysRevLett.121.033602.
[7] [7] AHN J, XU Z, BANG J, et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor[J]. Physical Review Letters, 2018, 121(3):033603. DOI: 10.1103/PhysRevLett.121.033603.
[8] [8] KUANG T, HUANG R, XIONG W, et al. Nonlinear multi-frequency phonon lasers with active levitated optomechanics[J]. Nat Phys, 2023, 19:414-419. DOI: 10.1038/s41567-022-01857-9.
[9] [9] GERACI A A, PAPP S B, KITCHING J. Short-range force detection using optically-cooled levitated microspheres[J]. Physical Review Letters, 2010, 105(10):101101. DOI: 10.1103/PhysRevLett.105.101101.
[10] [10] BLAKEMORE C P, RIDER A D, ROY S, et al. Precision mass and density measurement of individual optically-levitated microspheres[J]. Physical Review Applied, 2019, 12(2):024037. DOI: 10.1103/PhysRevApplied.12.024037.
[11] [11] RANJIT G, ATHERTON D P, STUTZ J H, et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum[J]. Physical Review A, 2015, 91(5):051805. DOI: 10.1103/PhysRevA.91.051805.
[12] [12] WINSTONE G, BENNETT R, RADEMACHER M, et al. Direct measurement of the electrostatic image force of a levitated charged nanoparticle close to a surface[J]. Physical Review A, 2018, 98 (5):053831. DOI: 10.1103/PhysRevA.98.053831.
[13] [13] MOORE D C, RIDER A D, GRATTA G. Search for millicharged particles using optically levitated microspheres[J]. Physical Review Letters, 2014, 113(25):251801. DOI: 10.1103/PhysRevLett.113.251801.
[14] [14] HEBESTREIT E, REIMANN R, FRIMMER M, et al. Measuring the internal temperature of a levitated nanoparticle in high vacuum[J]. Physical Review A, 2018, 97(4):043803. DOI: 10.1103/PhysRevA.97.043803.
[15] [15] MONTEIRO F, GHOSH S, FINE A G, et al. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity[J]. Physical Review A, 2017, 96(6):063841. DOI: 10.1103/PhysRevA.96.063841.
[16] [16] HEMPSTON D, VOVROSH J, TOROS M, et al. Force sensing with an optically levitated charged nanoparticle[J]. Applied Physics Letters, 2017, 111(13):133111. DOI: 10.1063/1.4993555.
[17] [17] MILLEN J, DEESUMAN T, BARKER P, et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere[J]. Nature Nanotechnology, 2014, 9(6):425-429. DOI: 10.1038/nnano.2014.82.
[18] [18] ZHENG Y, ZHOU L, DONG Y, et al. Robust optical-levitation-based metrology of nanoparticle's position and mass[J]. Physical Review Letters, 2020, 124(22):223603. DOI: 10.1103/PhysRevLett.124.223603.
[19] [19] ZHU S, FU Z, GAO X, et al. Nanoscale electric field sensing using levitated nano-resonator with net charge[J]. Photonics Research, 2023, 11(2):279-289. DOI: 10.1364/PRJ.475793.
[20] [20] MONTEIRO F, LI W, AFEK G, et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures[J]. Physical Review A, 2020, 101(5):053835. DOI: 10.1103/PhysRevA.101.053835.
[21] [21] SCHUCK M, STEINERT D, NUSSBAUMER T, et al. Ultrafast rotation of magnetically levitated macroscopic steel spheres[J]. Science Advances, 2018, 4(1):e1701519. DOI: 10.1126/sciadv.1701519.
[22] [22] TIAN Y, ZHENG Y, LIU L H, et al. Medium vacuum feasible displacement calibration of an optically levitated duffing nonlinear oscillator[J]. Applied Physics Letters, 2022, 120(22):221103. DOI: 10.1063/5.0090178.
[23] [23] ROMERO-ISART O, JUAN M L, QUIDANT R, et al. Toward quantum superposition of living organisms[J]. New Journal of Physics, 2010, 12(3):033015. DOI: 10.1088/1367-2630/12/3/033015.
[24] [24] ROMERO-ISART O, PFLANZER A C, BLASER F, et al. Large quantum superpositions and interference of massive nanometer-sized objects[J]. Physical Review Letters, 2011, 107(2):020405. DOI: 10.1103/PhysRevLett.107.020405.
[25] [25] ARVANITAKI A, GERACI A A. Detecting high-frequency gravitational waves with optically levitated sensors[J]. Physical Review Letters, 2013, 110(7):071105. DOI: 10.1103/PhysRevLett.110.071105.
[26] [26] LI T, KHEIFETS S, MEDELLIN D, et al. Measurement of the instantaneous velocity of a Brownian particle[J]. Science, 2010, 328(5986):1673-1675. DOI: 10.1126/science.1189403.
[27] [27] LI T, KHEIFETS S, RAIZEN M G. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nature Physics, 7(3):527-530. DOI: 10.1038/NPHYS1952.
[28] [28] RANJIT G, CUNNINGHA M, CASEY K, et al. Zeptonewton force sensing with nanospheres in an optical lattice[J]. Physical Review A, 93(5):053801. DOI: 10.1103/PhysRevA.93.053801.
[29] [29] JIN Y, YAN J, RAHMAN S J, et al. 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum[J]. Photonics Research, 2021, 9(7):1344-1350. DOI: 10.1364/PRJ.422975.
[30] [30] PONTIN A, FU H, TOROS M, et al. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle[J]. Nat Phys, 2023, 19:1003-1008. DOI: 10.1038/s41567-023-02006-6.
[31] [31] YU X, JIN Y, SHEN H, et al. Hermitian and non-Hermitian normal-mode splitting in an optically-levitated nanoparticle[J]. Quantum Frontiers, 2022, 1(6):1-6. DOI: 10.1007/s44214-022-00003-z.
[32] [32] ARITA Y, WRIGHT E M, DHOLAKIAL K. Optical binding of two cooled micro-gyroscopes levitated in vacuum[J]. Optica, 2018, 5(8):910-917. DOI: 10.1364/OPTICA.5.000910.
[33] [33] RIESER J, CIAMPINI M A, RUDOLPH H, et al. Tunable light-induced dipole-dipole interactions between optically levitated nanoparticles[J]. Science, 2022, 377(6609):987-990. DOI: 10.1126/science.abp9941.
[34] [34] PENNY T W, PONTIN A, BARKER P F. Sympathetic cooling and squeezing of two co-levitated nanoparticles[J]. Phys Rev Reasearch, 2023, 5(1):013070. DOI: 10.1103/PhysRevResearch.5.013070.
[35] [35] JIN Y, YAN J, RAHMAN S J, et al. Interference of the scattered vector light fields from two optically levitated nanoparticles[J]. Optics Express, 2022, 30(11):20026-20037. DOI: 10.1364/OE.454082.
[36] [36] JIN Y, YAN J, RAHMAN S J, et al. Imaging the dipole scattering of an optically levitated dielectric nanoparticle[J]. Applied Physics Letters, 2021, 119(2):021106. DOI: 10.1063/5.0053008.
[37] [37] FRIMMER M, LUSZCZ K, FERREIRO S, et al. Controlling the net charge on a nanoparticle optically levitated in vacuum[J]. Physical Review A, 2017, 95(6):061801. DOI: 10.1103/PhysRevA.95.061801.
[38] [38] JIN Y B, YU X D, ZHANG J. Optically levitated nanosphere with high trapping frequency[J]. Science China (Physics, Mechanics & Astronomy), 2018, 61(11):114221. DOI: 10.1007/s11433-018-9230-6.
Get Citation
Copy Citation Text
WANG Yan, GAO Chen-li, YAN Jiang-wei, YU Xu-dong, ZHANG Jing. Light-induced Dipole-dipole Interaction of Two Optically Levitated Nanoparticles in a Vacuum[J]. Journal of Quantum Optics, 2024, 30(1): 10502
Category:
Received: Jan. 15, 2023
Accepted: --
Published Online: Aug. 23, 2024
The Author Email: ZHANG Jing (jzhang74@yahoo.com)