Journal of Natural Resources, Volume. 35, Issue 3, 728(2020)

Irrigation water pressure, supply elasticity and grain production structure based on heterogeneous coefficient Nerlove model

Xin YANG and Yue-ying MU*
Author Affiliations
  • College of Economics and Management, China Agricultural University, Beijing 100083, China
  • show less
    Figures & Tables(7)
    Theoretical framework
    Average comparison of irrigation water pressure index and simplified irrigation water pressure index of each province in China from 2002 to 2017
    • Table 1. Descriptive statistics

      View table
      View in Article

      Table 1. Descriptive statistics

      变量符号平均值标准差最小值最大值样本量/个
      灌溉水压力指数/%δ33.9235.333.08158.59432
      年降水量/mmrain957.74557.97142.712555.80432
      每年≥10 ℃日数/天tep231.1964.11119.00363.00432
      有效灌溉面积比例/%irr45.8020.5613.7098.64432
      农业劳动力价格/元lab2364.442010.21132.0114886.07432
      第一产业就业人数比例/%fir0.430.120.190.81432
      小麦价格/(元/kg)P11.130.510.103.51432
      水稻价格/(元/kg)P21.170.360.102.26432
      玉米价格/(元/kg)P31.030.480.102.42432
      豆类价格/(元/kg)P42.671.450.717.78432
      薯类价格/(元/kg)P52.771.050.659.67432
      油料价格/(元/kg)P62.230.710.825.48432
      蔬菜价格/(元/kg)P71.401.190.307.77432
      小麦产量/万tY1414.00714.6321.783705.20240
      水稻产量/万tY21042.85665.83110.602819.30304
      玉米产量/万tY3835.69752.43100.203703.10336
      豆类产量/万tY478.09112.789.70719.00384
      薯类产量/万tY5131.31101.418.18531.10432
    • Table 2. Sargan test and Arellano-Bond test for Nerlove model

      View table
      View in Article

      Table 2. Sargan test and Arellano-Bond test for Nerlove model

      小麦水稻玉米豆类薯类
      Sargan检验0.2510.3020.3630.2730.292
      Arellano-Bond检验AR(1)0.0230.0030.0120.0480.036
      AR(2)0.8450.2530.6710.9960.432
    • Table 3. Regression results of Nerlove model

      View table
      View in Article

      Table 3. Regression results of Nerlove model

      变量小麦水稻玉米豆类薯类
      lnδt-1-0.140***-0.316***0.221***-0.145**-0.216***
      (0.029)(0.060)(0.036)(0.066)(0.059)
      lnYt-10.555***0.603***0.608***0.604***0.718***
      (0.050)(0.039)(0.042)(0.060)(0.046)
      lnP1,t-10.899***-0.030-0.1530.0660.465***
      (0.188)(0.080)(0.110)(0.208)(0.152)
      lnP2,t-1-0.907***0.782**0.469***-0.2020.076
      (0.200)(0.098)(0.123)(0.221)(0.103)
      lnP3,t-1-0.1160.213***0.661***-0.301**0.268**
      (0.163)(0.077)(0.104)(0.148)(0.114)
      lnP4,t-10.362***0.147***0.179***0.283***-0.097
      (0.129)(0.055)(0.052)(0.101)(0.106)
      lnP5,t-10.037-0.0770.062-0.0430.181***
      (0.092)(0.074)(0.054)(0.103)(0.009)
      lnP6,t-1-0.0110.188***0.083-0.102-0.308***
      (0.117)(0.059)(0.061)(0.115)(0.106)
      lnP7,t-10.1380.0610.0400.067-0.432***
      (0.123)(0.070)(0.061)(0.124)(0.089)
      lnraint-0.341***0.074*-0.029-0.0290.162***
      (0.077)(0.045)(0.054)(0.086)(0.069)
      lntept1.448***-0.366*-0.1070.0450.631*
      (0.274)(0.137)(0.190)(0.250)(0.332)
      lnirrt0.459***0.060***-0.0340.092-0.443***
      (0.116)(0.015)(0.077)(0.136)(0.122)
      lnlabt-0.075***-0.0200.094***-0.0180.188***
      (0.052)(0.030)(0.028)(0.046)(0.044)
      lnfirt-0.049-0.201*-0.0850.166**0.589***
      (0.255)(0.104)(0.131)(0.207)(0.204)
      CPt-0.224***-0.0540.098***0.1050.242***
      (0.066)(0.037)(0.037)(0.098)(0.062)
      WPt0.297***0.054-0.0740.074-0.312***
      (0.082)(0.049)(0.055)(0.081)(0.092)
      RPt-0.223***0.103***0.002-0.117*-0.174***
      (0.083)(0.034)(0.043)(0.062)(0.060)
      常数项-5.266***5.073***2.173**1.9820.608
      (1.531)(0.854)(1.008)(1.420)(1.568)
      观测值225285315360405
    • Table 4. Regression results of heterogeneous coefficient Nerlove model

      View table
      View in Article

      Table 4. Regression results of heterogeneous coefficient Nerlove model

      变量(自然对数形式)小麦水稻玉米豆类薯类
      以灌溉水压力指数回归的结果
      lnPk,t-1×lnδt-1-0.254*0.199**0.169***-0.308***-0.157*
      (0.145)(0.089)(0.071)(0.118)(0.091)
      lnPk,t-11.665***0.557*0.6451.678***1.159*
      (0.476)(0.283)(0.611)(0.253)(0.326)
      lnδt-10.268***-0.0890.248***0.161-0.009
      (0.010)(0.057)(0.039(0.135)(0.110)
      lnYt-10.541***0.417***0.495***0.618***0.509***
      (0.051)(0.043)(0.043)(0.061)(0.060)
      以简化灌溉水压力指数回归的结果
      lnPk,t-1×lnδt-1'-0.337**0.508***0.305*-0.213*0.367***
      (0.154)(0.122)(0.091)(0.113)(0.158)
      lnPk,t-11.944***-0.640***0.2281.263***-0.380
      (0.449)(0.180)(0.057)(0.265)(0.410)
      lnδt-1'0.079-0.078-0.066-0.323**-0.507***
      (0.087)(0.063)(0.058)(0.133)(0.179)
      lnYt-10.591***0.750***0.700***0.533***0.367**
      (0.043)(0.039)(0.040)(0.050)(0.157)
    • Table 5. Spatio-temporal changes of irrigation water pressure index and long-term supply elasticity of grain in main grain-producing areas of China

      View table
      View in Article

      Table 5. Spatio-temporal changes of irrigation water pressure index and long-term supply elasticity of grain in main grain-producing areas of China

      灌溉水压力指数平均值/%长期供给弹性
      小麦水稻玉米豆类薯类
      不同年份2003年28.7731.7682.1022.8891.6841.286
      2008年33.2881.6882.1522.9591.5661.240
      2013年36.3141.6402.1823.0001.4961.212
      2017年36.0261.6442.1792.9961.5031.214
      南方粮食主产区江苏13.4912.1881.8442.5292.2951.528
      安徽6.0942.6271.5722.1512.9351.783
      湖北8.9932.4121.7052.3362.6221.658
      湖南25.5982.0621.7781.324
      江西24.8962.0531.333
      四川13.5422.1851.8452.5312.2921.527
      平均值15.4362.3531.8472.3872.3841.526
      北方粮食主产区河北147.8660.8633.6690.3640.763
      山东61.7551.3462.3633.2531.0681.042
      河南70.3601.2742.4073.3150.9631.000
      内蒙古28.5551.7732.8861.6901.289
      黑龙江9.7582.3671.7332.3742.5561.632
      辽宁75.4531.2352.4313.3480.9070.978
      吉林46.4421.5032.2663.1171.2981.133
      平均值62.8841.4802.2403.1371.2641.120
    Tools

    Get Citation

    Copy Citation Text

    Xin YANG, Yue-ying MU. Irrigation water pressure, supply elasticity and grain production structure based on heterogeneous coefficient Nerlove model[J]. Journal of Natural Resources, 2020, 35(3): 728

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 9, 2019

    Accepted: --

    Published Online: Sep. 25, 2020

    The Author Email: Yue-ying MU (yueyingmu@cau.edu.cn)

    DOI:10.31497/zrzyxb.20200317

    Topics