Chinese Journal of Lasers, Volume. 49, Issue 11, 1107001(2022)

Fundus Image Screening for Diabetic Retinopathy

Jiayu Li1, Minghui Chen1、*, Ruijun Yang2, Wenfei Ma1, Xiangling Lai1, Duowen Huang1, Duxin Liu1, Xinhong Ma1, and Yue Shen1
Author Affiliations
  • 1Shanghai Engineering Research Center of Interventional Medical, the Ministry of Education of Medical Optical Engineering Center, Department of Biomedical Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2The Third People’s Hospital of Mianyang City, Mianyang 621000, Sichuan, China
  • show less
    Figures & Tables(10)
    Architecture of CA-RepVGG
    Ultra lightweight attention module ECA-Net
    RepVGG module. (a) Training; (b) inference
    Schematic of convolution transformation
    Data enhancement. (a) Original image; (b) rotation of 60°;(c) mirror horizontally; (d) enhancement of brightness; (e) Gamma transformation; (f) adaptive histogram equalization
    Confusion matrix of dataset 1
    Confusion matrix of dataset 2
    • Table 1. 2015 diabetic retinopathy detection dataset

      View table

      Table 1. 2015 diabetic retinopathy detection dataset

      GradeDegree of illnessNumber of training imagesNumber of testing imagesTotal
      0Healthy258103953365343
      1Light244337626205
      2Moderate5292786113153
      3Severe87312142087
      4Proliferative70812061914
    • Table 2. Comparison of performance indicators of different models for dataset 1

      View table

      Table 2. Comparison of performance indicators of different models for dataset 1

      ModelParameter number /106Speed /(photo·s-1)Accuracy /%Precision /%Sensitivity /%
      VGG-1613.8420882.083.985.0
      Inception-V327.1629587.389.493.2
      ResNet-5025.5636089.590.797.0
      ResNext-5025.0324291.091.396.5
      CA-RepVGG (ours)51.8241592.491.696.5
    • Table 3. Comparison of performance indicators of different models for dataset 2

      View table

      Table 3. Comparison of performance indicators of different models for dataset 2

      ModelParameter number /106Speed /(photo·s-1)Accuracy /%Precision /%Sensitivity /%
      VGG-1613.8420883.082.784.0
      Inception-V327.1629585.388.486.2
      ResNet-5025.5636089.489.791.0
      ResNext-5025.0324291.590.590.4
      CA-RepVGG (ours)51.8241593.996.393.8
    Tools

    Get Citation

    Copy Citation Text

    Jiayu Li, Minghui Chen, Ruijun Yang, Wenfei Ma, Xiangling Lai, Duowen Huang, Duxin Liu, Xinhong Ma, Yue Shen. Fundus Image Screening for Diabetic Retinopathy[J]. Chinese Journal of Lasers, 2022, 49(11): 1107001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Sep. 16, 2021

    Accepted: Nov. 8, 2021

    Published Online: Jun. 2, 2022

    The Author Email: Minghui Chen (cmhui.43@163.com)

    DOI:10.3788/CJL202249.1107001

    Topics