Laser & Optoelectronics Progress, Volume. 56, Issue 13, 131007(2019)
Image Semantic Segmentation Based on Multi-Scale Feature Extraction and Fully Connected Conditional Random Fields
[6] Long J, Shelhamer E, Darrell T. Fully Convolutional networks for semantic segmentation. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 3431-3440(2015).
[7] Chen L C, Papandreou G, Kokkinos I, fully connected CRFs[EB/OL] et al. -06-07)[2018-10-25]. https:∥arxiv., org/abs/1412, 7062(2016).
[9] Noh H, Hong S, Han B. Learning deConvolution network for semantic segmentation. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1520-1528(2015).
[10] Yu F. -04-30)[2018-10-25]. https:∥arxiv., org/abs/1511, 07122(2016).
[12] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 6230-6239(2017).
[13] Lin G S. Shen C H, van den Hengel A, et al. Efficient piecewise training of deep structured models for semantic segmentation. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 3194-3203(2016).
[17] Zheng S, Jayasumana S, Romera-Paredes B et al. Conditional random fields as recurrent neural networks. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1529-1537(2015).
[18] Lin G S. Shen C H, van den Hengel A, et al. Exploring context with deep structured models for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1352-1366(2018).
[19] Lafferty J D. McCallum A, Pereira F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data. [C]∥Proceedings of the Eighteenth International Conference on Machine Learning, June 28-July 01, 2001. San Francisco: Morgan Kaufmann Publishers Inc., 282-289(2001).
[20] Krähenbühl P, Koltun V. Efficient inference in fully connected CRFs with Gaussian edge potentials. [C]∥Proceedings of the 24th International Conference on Neural Information Processing Systems, December 12-15, 2011, Granada, Spain. USA: Curran Associates Inc., 109-117(2011).
[21] Vemulapalli R, Tuzel O, Liu M Y et al. Gaussian conditional random field network for semantic segmentation. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA, 3224-3233(2016).
[22] Hazirbas C, Ma L N, Domokos C et al. FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture[M]. ∥Lai S H, Lepetit V, Nishino K,
[23] Silberman N, Hoiem D, Kohli P et al. Indoor segmentation and support inference from RGBD images[M]. ∥Fitzgibbon A, Lazebnik S, Perona P,
[24] Gupta S, Arbeláez P, Malik J. Perceptual organization and recognition of indoor scenes from RGB-D images. [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 23-28, 2013, Portland, OR, USA. New York: IEEE, 564-571(2013).
[25] Gupta S, Girshick R, Arbeláez P et al. Learning rich features from RGB-D images for object detection and segmentation[M]. ∥ Fleet D, Pajdla T, Schiele B,
[26] Deng Z, Todorovic S, Latecki L J. Semantic segmentation of RGBD images with mutex constraints. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1733-1741(2015).
Get Citation
Copy Citation Text
Yongfeng Dong, Yuxin Yang, Liqin Wang. Image Semantic Segmentation Based on Multi-Scale Feature Extraction and Fully Connected Conditional Random Fields[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131007
Category: Image Processing
Received: Nov. 13, 2018
Accepted: Jan. 30, 2019
Published Online: Jul. 11, 2019
The Author Email: Wang Liqin (wangliqin@scse.hebut.edu.cn)