Laser & Optoelectronics Progress, Volume. 56, Issue 13, 131007(2019)

Image Semantic Segmentation Based on Multi-Scale Feature Extraction and Fully Connected Conditional Random Fields

Yongfeng Dong1,2, Yuxin Yang1, and Liqin Wang1,2、*
Author Affiliations
  • 1 School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
  • 2 Hebei Provincial Key Laboratory of Big Data Computing, Tianjin 300401, China
  • show less
    References(26)

    [6] Long J, Shelhamer E, Darrell T. Fully Convolutional networks for semantic segmentation. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 3431-3440(2015).

    [7] Chen L C, Papandreou G, Kokkinos I, fully connected CRFs[EB/OL] et al. -06-07)[2018-10-25]. https:∥arxiv., org/abs/1412, 7062(2016).

    [9] Noh H, Hong S, Han B. Learning deConvolution network for semantic segmentation. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1520-1528(2015).

    [10] Yu F. -04-30)[2018-10-25]. https:∥arxiv., org/abs/1511, 07122(2016).

    [12] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 6230-6239(2017).

    [13] Lin G S. Shen C H, van den Hengel A, et al. Efficient piecewise training of deep structured models for semantic segmentation. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 3194-3203(2016).

    [17] Zheng S, Jayasumana S, Romera-Paredes B et al. Conditional random fields as recurrent neural networks. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1529-1537(2015).

    [18] Lin G S. Shen C H, van den Hengel A, et al. Exploring context with deep structured models for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1352-1366(2018).

    [19] Lafferty J D. McCallum A, Pereira F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data. [C]∥Proceedings of the Eighteenth International Conference on Machine Learning, June 28-July 01, 2001. San Francisco: Morgan Kaufmann Publishers Inc., 282-289(2001).

    [20] Krähenbühl P, Koltun V. Efficient inference in fully connected CRFs with Gaussian edge potentials. [C]∥Proceedings of the 24th International Conference on Neural Information Processing Systems, December 12-15, 2011, Granada, Spain. USA: Curran Associates Inc., 109-117(2011).

    [21] Vemulapalli R, Tuzel O, Liu M Y et al. Gaussian conditional random field network for semantic segmentation. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA, 3224-3233(2016).

    [22] Hazirbas C, Ma L N, Domokos C et al. FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture[M]. ∥Lai S H, Lepetit V, Nishino K, et al.Computer vision-ACCV 2016. Lecture notes in computer science. Cham: Springer, 10111, 213-228(2017).

    [23] Silberman N, Hoiem D, Kohli P et al. Indoor segmentation and support inference from RGBD images[M]. ∥Fitzgibbon A, Lazebnik S, Perona P, et al. Computer vision-ECCV 2012. Lecture notes in computer science. Berlin, Heidelberg: Springer, 7576, 746-760(2012).

    [24] Gupta S, Arbeláez P, Malik J. Perceptual organization and recognition of indoor scenes from RGB-D images. [C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 23-28, 2013, Portland, OR, USA. New York: IEEE, 564-571(2013).

    [25] Gupta S, Girshick R, Arbeláez P et al. Learning rich features from RGB-D images for object detection and segmentation[M]. ∥ Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer, 8695, 345-360(2014).

    [26] Deng Z, Todorovic S, Latecki L J. Semantic segmentation of RGBD images with mutex constraints. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 1733-1741(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yongfeng Dong, Yuxin Yang, Liqin Wang. Image Semantic Segmentation Based on Multi-Scale Feature Extraction and Fully Connected Conditional Random Fields[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 13, 2018

    Accepted: Jan. 30, 2019

    Published Online: Jul. 11, 2019

    The Author Email: Wang Liqin (wangliqin@scse.hebut.edu.cn)

    DOI:10.3788/LOP56.131007

    Topics