Journal of Applied Optics, Volume. 45, Issue 1, 89(2024)
Underwater image enhancement based on multiscale residual attention networks
[1] XU Xiaojun, LU Qisheng, SHU Baihong et al. Back-scattering model and experiment of laser illuminating[J]. Infrared and Laser Engineering, 30, 60(2001).
[2] LI Fangzhu. A review of the theory of submarine jet genesis hot water depositional metallogenesis[J]. Geological Science and Technology Information, 12, 4(1993).
[3] DENG quan, LIN Mingxing. Improved SSD-based marine organism detection algorithm[J]. Computer Technology and Development, 32, 51-56(2022).
[4] MA Yanru. A preliminary study on the desalination and conservation of ceramics from underwater archaeological excavations in China[J]. Museum Research, 85-89(2007).
[5] ZUIDERVELD K. Contrast limited adaptive histogram equalization[J]. Graphics Gems, 474-485(1994).
[6] IQBAL K, ODETAYO M O, JAMES A E et al. Enhancing the low quality images using unsupervised colour correction method[C], 1703-1709(2010).
[7] DREWS P L J, NASCIMENTO E R, BOELHO S S C et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Transactions on Computer Graphics and Applications, 36, 24-35(2016).
[8] PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Process, 26, 1579-1594(2017).
[9] SUN X, LIU L, LI Q et al. Deep pixel-to-pixel network for underwater image enhancement and restoration[J]. IET Image Processing, 13, 469-474(2019).
[10] LI C, ANWAR S. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 98, 2105-2111(2019).
[11] LU L, YUN L, XIAO Q et al. Evaluating fast algorithms for convolutional neural networks on FPGAs[C], 857-870.
[12] HE K, ZHANG X, REN S et al. Deep residual learning for image recognition[C], 770-778(2016).
[14] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C], 234-241(2015).
[15] ZHOU Z, SIDDIQUEE M, TAJBAKHSH N et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 39, 1856-1867(2020).
[16] HUANG G, LIU Z, LAURENS V et al. Densely connected convolutional networks[C], 17355312(2017).
[17] LAI W, HUANG J, AHUJA N et al. Fast and accurate image super-resolution with deep laplacian pyramid networks.[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2599-2613(2019).
[18] ZHU J Y, PARK T, ISOLA P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 17453078(2017).
[19] UEKI Y, IKEHARA M. Underwater image enhancement with multi-scale residual attention network[C], 1-5(2021).
[20] ZHANG L, ER M J, WANG Z et al. Underwater image enhancement based on AttR2U-Net and multi-residual networks[C], 90-95(2022).
[21] WANG Z, SAIXIAN H E. An adaptive edge-detection method based on Canny algorithm[J]. Journal of Image and Graphics, 9, 957-962(2004).
Get Citation
Copy Citation Text
Qingjiang CHEN, Xuanjun WANG, Fei SHAO. Underwater image enhancement based on multiscale residual attention networks[J]. Journal of Applied Optics, 2024, 45(1): 89
Category: Research Articles
Received: Feb. 24, 2023
Accepted: --
Published Online: May. 28, 2024
The Author Email: Xuanjun WANG (王炫钧(1998—))