Optoelectronics Letters, Volume. 20, Issue 1, 35(2024)
Deep learning-based channel estimation for wireless ul-traviolet MIMO communication systems
[1] [1] XIAO H, ZUO Y, WU J, et al. Non-line-of-sight ultra-violet single-scatter propagation model[J]. Optics ex-press, 2011, 19(18): 17864-17875.
[2] [2] RAPTIS N, PIKASIS E, SYVRIDIS D. Power losses in diffuse ultraviolet optical communications channels[J]. Optics letters, 2016, 41(18): 4421-4424.
[3] [3] LI K Y, HUANG C, GONG Y, et al. Double deep learning for joint phase-shift and beam forming based on cascaded channels in RIS-assisted MIMO net-works[J]. IEEE wireless communications letters, 2023, 12(4): 659-663.
[4] [4] QIN H, ZUO Y, LI F Y, et al. Scattered propagation MIMO channel model for non-line-of-sight ultraviolet optical transmission[J]. IEEE photonics technology let-ters, 2017, 29(21): 1907-1910.
[5] [5] FANG Z X, SHI J. Least square channel estimation for two-way relay MIMO OFDM systems[J]. ETRI journal, 2011, 33(5): 806-809.
[6] [6] FANG J, LI X J, LI H B, et al. Low-rank covari-ance-assisted downlink training and channel estimation for FDD massive MIMO systems[J]. IEEE transactions on wireless communications, 2017, 16(3): 1935-1947.
[7] [7] JIANG T, SONG M Z, ZHAO X J, et al. Channel esti-mation for millimeter wave massive MIMO systems using separable compressive sensing[J]. IEEE access, 2021, 9: 49738-49749.
[8] [8] SALARI S, CHAN F. Joint CFO and channel estimation in OFDM systems using sparse Bayesian learning[J]. IEEE communications letters, 2021, 25(1): 166-170.
[9] [9] SEYMAN M N, NECMI T. Channel estimation based on neural network in space time block coded MIMO-OFDM system[J]. Digital signal processing, 2013, 23(1): 275-280.
[10] [10] HUANG C L, CHEN C W, WEI S W. Channel estima-tion for OFDM system with two training symbols aided and polynomial fitting[J]. IEEE transactions on com-munications, 2010, 58(3): 733-736.
[11] [11] XIAO H F, ZUO Y, WU J, et al. Bit-error-rate perfor-mance of non-line-of-sight UV transmission with spatial diversity reception[J]. Optics letters, 2012, 37(19): 4143-4145.
[12] [12] ZHAO T, LIU L, LIU L, et al. Differential evolution particle filtering channel estimation for non-line-of-sight wireless ultraviolet communication[J]. Optics communications, 2019, 451: 80-85.
[13] [13] WEI Z K, HU W X, HAN D H, et al. Simultaneous channel estimation and signal detection in wireless ul-traviolet communications combating in-ter-symbol-interference[J]. Optics express, 2018, 26(3): 3260-3270.
[14] [14] LUO C Q, JI J L, WANG Q L, et al. Channel state in-formation prediction for 5G wireless communications: a deep learning approach[J]. IEEE transactions on net-work science and engineering, 2020, 7(1): 227-236.
[15] [15] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[16] [16] LIAO Y, HUA Y X, CAI Y L. Deep learning based-channel estimation algorithm for fast time-varying MIMO-OFDM systems[J]. IEEE communications let-ters, 2020, 24(3): 572-576.
[17] [17] GAO Z P, WANG Y H, LIU X D, et al. FFDNet-based channel estimation for massive MIMO visible light communication systems[J]. IEEE wireless communica-tions letters, 2020, 9(3): 340-343.
[18] [18] MOHADES Z, VAKILI V T. Deep neural network for compressive sensing and application to massive MIMO channel estimation[J]. Circuits systems signal pro-cessing, 2021, 40(9): 4474-4489.
[19] [19] HU T Y, HUANG Y, ZHU Q M, et al. Channel estima-tion enhancement with generative adversarial net-works[J]. IEEE transactions on cognitive communica-tions and networking, 2021, 7(1): 45-156.
[20] [20] KALPHANA I, KESAVAMURTHY T. Convolutional neural network auto encoder channel estimation algo-rithm in MIMO-OFDM system[J]. Computer systems science and engineering, 2022, 41(1): 171-185.
[21] [21] GAO J B, HU M, ZHONE C J, et al. An attention-aided deep learning framework for massive MIMO channel estimation[J]. IEEE transactions on wireless communi-cations, 2022, 21(3): 1823-1835.
[22] [22] LYU S, LI X H, FAN T, et al. Deep learning for fast channel estimation in millimeter-wave MIMO sys-tems[J]. Journal of systems engineering and electronics, 2022, 33(1): 1088-1095.
[23] [23] ZHAO T F, LV X Z, ZHANG H J, et al. Wireless ultra-violet scattering channel estimation method based on deep learning[J]. Optics express, 2021, 29: 39633-39647.
[24] [24] HE Q F, XU Z Y, SADLER B M. Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers[J]. Optics express, 2010, 18(12): 12226-12238.
[25] [25] XIAO H F, ZUO Y, WU J, et al. Non-line-of-sight ul-traviolet single-scatter propagation model in random turbulent medium[J]. Optics letters, 2013, 38(17): 3366-3369.
[26] [26] DING H, CHEN G, MAJUMDAR A K, et al. Turbu-lence modeling for non-line-of-sight ultraviolet scatter-ing channels[J]. Proceedings of SPIE - the international society for optical engineering, 2011, 8038.
[27] [27] WU B, YUAN S B, LI P, et al. Radar emitter signal recognition based on one-dimensional convolutional neural network with attention mechanism[J]. Sensors, 2020, 20(21).
Get Citation
Copy Citation Text
ZHAO Taifei, SUN Yuxin, Lü Xinzhe, and ZHANG Shuang. Deep learning-based channel estimation for wireless ul-traviolet MIMO communication systems[J]. Optoelectronics Letters, 2024, 20(1): 35
Received: Apr. 12, 2023
Accepted: Jul. 3, 2023
Published Online: May. 15, 2024
The Author Email: Taifei ZHAO (year623@163.com)